
Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

6. a 1

EXTENT, CHARACTER, AND FORESTATION POSSIBILITIES OF LAND STRIPPED FOR COAL IN THE CENTRAL STATES

BY G. A. LIMSTROM

Harold L. Mitchell, Director

TECHNICAL PAPER Nº 109

DECEMBER 1948

CONTRIBUTING PERSONNEL

The following staff members of the Central States Forest Experiment Station have contributed to this publication. Members of the present staff are indicated by an asterisk (*).

A. G. CHAPMAN,* Chief, Division of Forest Management Research

J. T. Auten,* Forest Soils

Project Personnel

<u>Project Leaders</u> - - - G. A. Limstrom,* Ralph H. Ahlskog <u>Ohio - Kentucky</u> - - - R. W. Merz,* Joe A. Gandy, Kenneth Ratcliff, R. D. Lane* <u>Illinois - Indiana</u> - - Deane W. Mather, Leslie W. Gysel, T. E. Davis, Charles J. Schissel, G. H. Deitschman* <u>Area West of</u>

<u>Mississippi River</u> - - - Nelson F. Rogers,* John Krajicek*

COOPERATING AGENCIES

Federal - - Production and Marketing Administration, U. S. Dept. of Agr.; Soil Conservation Service, U. S. Dept. of Agr.

State

- <u>Ohio</u> - Geol. Sur.; Ohio State Agr. Exp. Sta.; Ohio University; Bur. Mines, Dept. of Indus. Rel.
- <u>Indiana</u> Purdue University Agr. Exp. Sta.; Division of Forestry, Dept. of Conservation.
- <u>Illinois</u> University of Illinois; Geological Survey; Div. of Forestry, Dept. of Conservation.
- <u>Missouri</u> University of Missouri; Forestry Dept., Missouri Conservation Comm.; Geol. Sur. and Water Resources.
- Arkansas Arkansas Forestry Commission
- Oklahoma Oklahoma Agr. and Mech. College; Div. of For., Oklahoma Planning and Resources Board; Geol. Sur.
- <u>Iowa</u> - Forestry Dept., Iowa State College; Div. of Land and Water, Conservation Comm.; Geol. Sur.
- Kansas - Kansas State College of Agriculture and Applied Science; Geol. Sur.; Kansas For., Fish, and Game Comm.; Kansas State Teachers College.
- Kentucky Div. of For., Dept. of Conservation; Kentucky Agr. Exp. Sta.
- <u>Private</u> - Ohio Reclamation Assoc.; Indiana Coal Producers Assoc.; Illinois Coal Strippers Assoc.; Missouri Coal Operators Assoc.; Southwestern Interstate Coal Operators Assoc.; Iowa Coal Institute; West Kentucky Coal Agency

Figure 1.--Typical strip-mined land immediately after mining. Ninety-five percent of the strip-mined land in the Central States can be made productive.

Figure 2.--A reforested strip-mined area used for wood production and recreation.

CONTENTS

																						Page
Intro	oduction	1																		0		1
	The ext	tent	of	str	ip-	mi	ini	ng	g i	n	tl	he	Ce	ent	tra	1	S1	tat	tes	З.		2
	Strip-n Uses of	ninin Sstr	ig m	eth min	ods ed	1	and	ls	•	•	•	•	•	•	•	•	•	•	•	•	*	2 8
	conditi																					11
	Acidity	-																				11
	Texture	e of	spo	il :	mat	tei	ria	als	3													14
	Ct Th	narac ne ra	ter	of	ro		38 11	•	•	ct	- 01	•	٠	٠	•	•	٠	*	•	*	•	14 15
	GI	acia	1,	loe	ssa	11,	, a	11	.uv	ria	31 1	ις , ε	and	Ľ		ø	0	•	•	*	0	T)
		othe	rd	epo	sit	58	•															16
	Topogra Stabili																					18 20
	Ground																					21
	Basic s	spoil	. ty	pe.																		23
	AI	ea o	of s	tri	p-n	ıiı	ned	1 1	ar	lds	3 3	in	tł	ıe	Ce	ent	t r e	1				
		Stat																				21
		CIAS	365	•	•	•	•		•	•	•	•	•	•	•	•	•	•	*		•	24
Fores	st plant																					25
	Choice	of s	pec	ies	•								•					•				
	Season Spacing	IOT	рта	nti	ng	*			•	•	٠		•	*			٠	•	•			27 29
	Mixed p	lant	ing	• •	•		•	•	•	•	•	•	*	•	•	•	*	•			*	29
	Care of	sto	ck	and	me	tt	100	ls	of	, r) 18	ant	tir	1g								31
	Care of) pla	nta	tio	ns		٠															32
	Direct																					32
	Exotic	spec	ies	• •		٠		*	•		٠			•	•			٠				32
The t	tentativ	ve pl	ant	ing	gu	iid	le	•	•	•	•	•	•	•				•	•	•		35
Resea	arch nee	eds .		•••		•	•	•	•	•		•	•	•	•			•		•	e	40
Suppl	Lementar	y pu	bli	cat	ior	ıs	•	•	•	•		•	•	•	•	•	•	•	•	•	•	40
Sugge	ested re	eadin	g.	• •	•	•	•	•	•	•		•		•	•	•		•		•	•	42
Apper	ndix.																					43

EXTENT, CHARACTER, AND FORESTATION POSSIBILITIES OF LAND

STRIPPED FOR COAL IN THE CENTRAL STATES

by

G. A. Limstrom

INTRODUCTION

Approximately 190,000 acres of land have been stripmined for coal in the Central States region. $\frac{1}{2}$ By this process the coal is obtained after removing all overlying soil and rock strata. Of this strip-mined area more than 95 percent is potentially useful for timber production, agricultural crops. or recreation. Less than 5 percent is unsuited to These estimates are based on a reconnaissance plant growth. made in 1946 and 1947 to determine the region's strip-mined area and its suitability for plant growth. These survey results served as a basis for studies to determine possible uses of strip-mined land. Areas were determined from maps and aerial photographs made available by landowners and various state and federal agencies, and verified by field examination. They include the total land surface from which the coal has been removed and the unmined lands upon which the excavated material has been placed. Adjacent undisturbed land surfaces which may or may not have been affected by these mining operations are not included.

Large-scale mining of coal by open-pit methods began a short time before the first World War when the development of power equipment made feasible the recovery of coal near the earth's surface that was not minable by common underground methods. The total area that can be stripped in the future is

<u>l</u>/ Includes Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Missouri, Ohio, and Oklahoma.

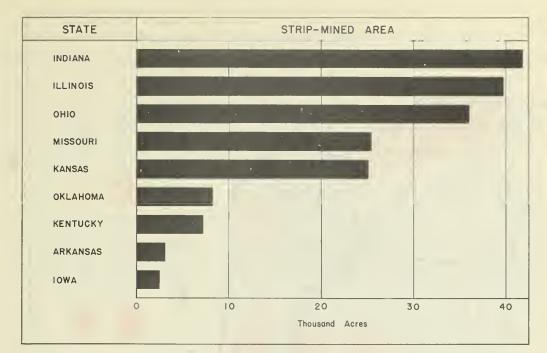
difficult to estimate because of: (1) luck of detailed prospecting date; (2) changing social and economic conditions influencing the industry; and (3) possible technological developments that may alter the depths to which coal can be recovered by these methods.

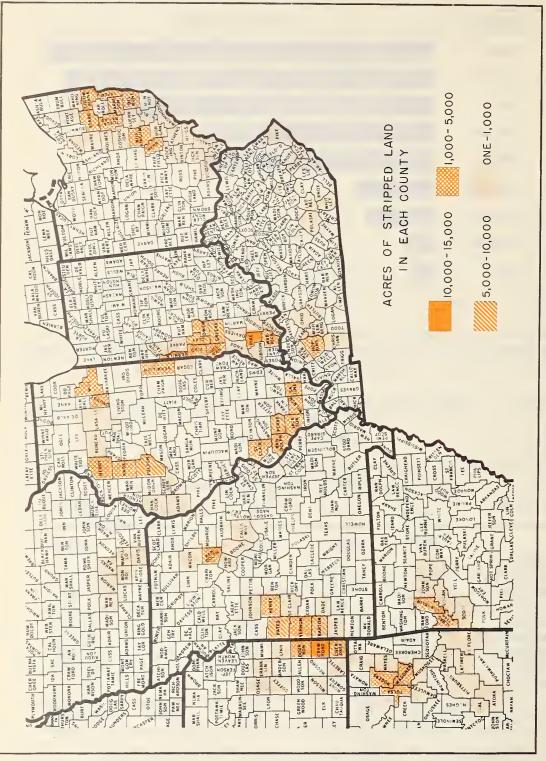
THE EXTENT OF STRIP-MINING IN THE CENTRAL STATES

Indiana, Illinois, and Ohio have approximately equal areas of strip-mined land, and together account for about three-fifths of such land in the Central States region (fig.3). Coal has been mined by this method in 123 counties in the region, extending west from Columbiana County, Ohio, to Wilson County, Kansas; and south from Marion County, Iowa, to Atoka County, Oklahoma. These operations are especially concentrated in Crawford County, Kansas; Pike County, Indiana; and Harrison County, Ohio, where 13,784, 10,438, and 8,631 acres, respectively, have been stripped (fig. 4). These acreages represent 3.6, 4.7, and 3.2 percent of the total land area of the individual counties, but in most other counties stripped land accounts for less than one percent of the total. A harger area was strip-mined during the past decade than in any prior decade (table 1).

STRIP-MINING METHODS

Strip-mining is the process of removing a mineral deposit after first removing all overlying soil and rock strata. Various methods have been employed to move the overburden. Primitive hand picks and shovels were first used along with animal-drawn slips and scrapers. Later power equipment was used such as bulldozers, carryalls, draglines, and shovels (figs. 5 & 6). Today most operations use power shovels and draglines having dippers and scoops of 5 to 40 cubic yards capacity. The first cut, usually 50 to 100 feet in width, is made at the outcrop line on a hill, or near the property line




Figure 3.--Area strip-mined for coal in the Central States region, through 1946.

	•	Age of	stripping		•
State	1 - 10: years :	11 - 20 years		Not determined	Total1/
	Acres	Acres	Acres	Acres	Acres
Arkansas Illinois Indiana Iowa Kansas Kentucky Missouri Ohio Oklahoma	1,835 18,462 22,818 1,747 13,331 6,220 9,568 26,576 4,394	600 8,488 13,838 743 5,911 536 9,927 7,413 1,896	735 982 4,541 9 5,940 511 5,953 2,224 2,026	0 11,888 712 0 0 0 48 0 0	3,170 39,820 41,909 2,499 25,182 7,267 25.496 36,213 8.316
Total	104,951	49,352	22,921	12,648 1	.89,872

Table 1.--Estimated area of strip-mined land by state and

age class, 1946

1/ The total estimated areas for each state are not strictly comparable because dates of estimates varied from October 1945 to June 1947. See tables in Appendix for dates of estimates made for each county and state.

_

on level terrain; the overlying material is placed on the side of the cut opposite the area to be mined. The coal is then removed with the use of smaller shovels and trucked to the tipple. The material moved in making the second cut is then dumped into the first. The cutting of successive strips produces a series of ridges of overturned material. The ridges or banks on different operations vary in slope and height depending on width of cut, thickness of overburden above the coal, character of rocks, and kind of equipment. The final cut leaves a depression, whose size is dependent upon the length, width, and depth of the cut. On one side is the ridge --on the other is the "high-wall" or bluff marking the edge of the final strip. Water is frequently impounded in these depressions. Where water levels are maintained above toxic materials in the adjoining high-walls, the lakes thus formed usually provide good habitats for game fish and an opportunity for recreational development.

The overburden of most coal fields is nearly always composed of two or more soil and rock strata, each of which differs from the others in hardness, texture, thickness, and chemical content. For example, in a single cut the overburden may consist of topsoil and varying thicknesses of glacial till, loess, limestone, sandstone, clay, sand, thick-bedded silty shale, and thin-bedded shale. Some of these strata are sandy in texture, some loamy, and others clayey. Many banks resulting from stripping may contain hard, massive rocks, requiring long periods to weather into soil-sized particles. Others may be so soft and poorly cemented that disintegration is rapid. Strata vary in chemical reaction; some are calcareous, some acid. Others, such as the pyritic shales, may contain enough sulphur to be toxic to plants. Hundreds of chemical analyses on many stripping operations show that many of the strata overlying coal seams are rich in mineral elements essential to plant growth. One important exception is nitrogen, which is normally added to the soil through rainfall, through the

- 5 -

Figure 5.--Strip-mining by power shovel methods accounts for more than 50 percent of the area stripped for coal in the Central States.

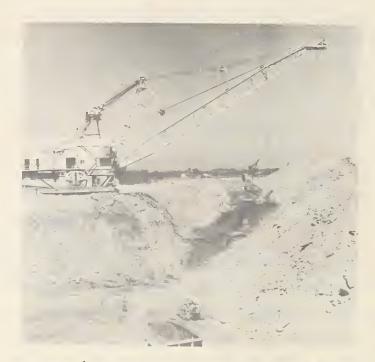


Figure 6.--Dragline methods of stripmining are also common.

Figure 7.--Sample "high-wall", showing the diversity of strata overturned and mixed in a stripping operation for the No. 7, Upper Freeport Coal, in Columbiana County, Ohio. The vertical scale is indicated by ten-foot intervals between the black lines. The numerals in the photograph refer to strata numbers as described in the following tabulation:

<u>Stratum</u> number	Stratum description	<u>Thick-</u> ness (Ft.)	<u>Acid</u> - <u>ity</u> (pH)	<u>Avail</u> - <u>able</u> phos- phorus	<u>Avail</u> - <u>able</u> <u>potas</u> - <u>sium</u>
1 2	Soil (Wooster Loam) Subsoil, (brown sandy loam, with some shale and well-rounded glacial	0.5	6.3	Medium	Low
	stones)	1	-	Medium	Low
3	Outcrop, (Mahoning coal)	1	4.7	Low	Low
4	Clay (dark gray, carbon-	~	1 /*	T	T
5	aceous, shaly)	5	4.5	Low	Low
)	Sandstone, (grayish brown massive)		5.8	Medium	Low
Ċ.	Shale, (grayish to brown, silty, thin-bedded, hard, mixed with fragmental sandstone)		6.1	Hign	Low
7	Upper Freeport Coal			11 - 014	2000

- 7 -

nitrogen-fixing bacteria of leguminous plants, and through the action of other bacteria and fungi.

In the excavation process, materials of the overburden are mixed so that the resulting spoil surfaces often vary considerably in texture, in proportion of soil and stone, in character of rock, in acidity, and in fertility. It should therefore be recognized that strip-mined lands are more variable in composition than the surface soil of undisturbed lands.

USES OF STRIP-MINED LANDS

More than 33,000 acres of strip-mined lands have been planted to forest tree species. This acreage includes only those forest plantations that were judged to be initially successful at the time of reconnaissance. More than 18,000 acres have become adequately forested through natural seeding (fig. 8). Approximately 55,000 acres are covered with weeds, grasses, shrubs, and legumes; some of this area is used as pasture, orchard, and for other agricultural purposes. Almost one-half of the area is barren, largely because it has been recently stripped. Many strip-mined areas are being used for fishing, bathing, and other recreational purposes, such as parks, game refuges, picnic areas, and campgrounds. Some are being developed for residential purposes, and in most states, the older banks are favorite locations for berry picking.

Figure 8.--Natural stand of sycamore and black locust on stripmined lands in Jackson County, Ohio.

Table 2. -- Vegetational cover of strip-mined lands

State	Barren	Herba- ceous	For	est Planted	Total	: Date : of : esti- : mate
	Acres	Acres	Acres	Acres	Acres	~
Arkansas Illinois Indiana Iowa Kansas Kentucky Missouri Ohio Oklahoma	1,549 12,114 11,103 1,503 10,150 5,924 11,944 22,654 4,782	924 15,684 4,709 834 9,362 938 10,840 9,744 2,759	693 2,235 7,049 146 3,345 384 2,521 1,710 563	4 9,787 19,048 16 2,325 21 191 2,105 212	3,170 39,820 41,909 2,499 25,182 7,267 25,496 36,213 8,316	1947 1946 1947 1947 1946 1947 1946 1945-46 1946
Total	81,723	55,794	18,646	33,709	189,872	

FFECT FORESTATION ARACINC'S

Iny site conditions have a bearing on the sulta, lity of strip-mined lands for forest planting. The most important of these are:

- 1. Acidity of spoils.
- 2. Texture of spoils, including:
 - a. The general character of rocks in the overburden.
 - b. The proportion of "soil" to stone.
 - c. The presence or absence of glacial, loessal, and alluvial deposits.
- 3. Topographic conditions, such as slope, aspect, and the degree of leveling.
- 4. Stability, such as erodibility, slipping, and settling.
- 5. Character and density of vegetation.

The first two conditions -- acidity and texture -- are the most important, and can be considered the basic factors that determine plantability and the potential productivity of spoils. The other conditions have important effects on the time or "readiness" for planting, and on the choice of species and kind of stock to be used.

ACIDITY OF SPOILS

In determining the best use of strip-mined lands, the acidity of the surface material is, perhaps, the most important single site factor to consider. In considering the effect of acidity on plant behavior, three broad ranges in acidity, based on pH values, are generally recognized:

> Toxic range, where the pH is less than 4.0. Under toxic conditions, little or no plant growth is possible. A pH of less than 3.8 is lethal to most i our common plants.

- 2. Acid, or "sour" range, where the pH is from 4.0 to 6.9. Many plants thrive on acid soils, but preliminary studies on strip-mined banks lead to the belief that merchantable crops of timber cannot be produced on banks with pH values from 4.0 to 4.5. Much more research is needed to determine growth possibilities of specific species in this range, and until conclusive results are obtained, it may be desirable to establish plantations for wood production on those areas where the pH values are generally above 4.5.
- 3. <u>Calcareous, or "sweet" range</u>, where the pH is 7.0 or more. Calcareous soils are suitable for the growth of a wide variety of plants.

The acidity of the surface of spoil banks varies depending upon the nature of stripping operations. In some instances the overturned strata, each differing in pH value, give a rather uniform mixture, in others a patch-wise mixture results. A bank entirely calcareous, acid, or toxic is rare indeed. In view of this fact, a practical classification of these lands for forestation requires a recognition of these varying conditions of acidity. The acidity of strip-mined lands has therefore been classified as follows:

- 1. <u>Toxic Banks</u>. These are banks having more than 75 percent of the surface area classified as toxic. Fatchy areas not toxic are so small and scattered that no separate treatment is practicable. Since toxic banks are not plantable, it is fortunate that the percentage of strip-mined lands in this condition is relatively small (fig. 9).
- 2. <u>Marginal Banks</u>. Fifty to seventy-five percent of the area of these banks is toxic, the remainder being acid, calcareous, or mixed. Marginal banks may not be suitable for timber production, but

the scattered areas which are not toxic can be planted for soil improvement, erosion control, wildlife, or aesthetic purposes.

- 3. <u>Acid Banks</u>. More than 50 percent of the area of these banks is acid. Much of the strip-mined land in the region is in this class, and can be forested with a wide variety of conifers and hardwoods.
- 4. <u>Calcareous Banks</u>. More than 50 percent of the surface area is calcareous. Such banks can be planted to a large variety of hardwoods and some conifers, and include most of the strip-mined lands of agricultural value.
- Mixed Banks. As the name indicates, these banks 5. are so mixed that no acidity class is predominant. By definition, less than 51 percent of the area is acid, less than 51 percent calcareous, and less than 50 percent toxic. In other words, patches of toxic, acid, and calcareous areas are about equal in size, and of such proportions that the area cannot be placed in any of the foregoing classes. The reclamation of mixed banks for agricultural, forest, or aesthetic purposes should vary with the distribution of these acidity classes on each area. Forest planting should be limited to those species that are adaptable to both acid and calcareous conditions.

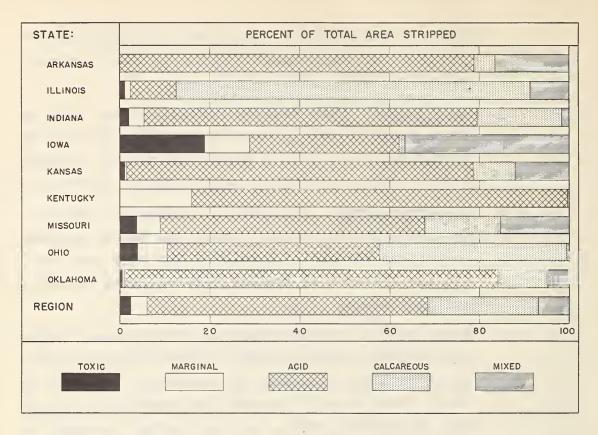


Figure 9.--Proportion of area of strip-mined land in acidity classes, 1946.

TEXTURE OF SPOIL MATERIALS

Character of Rocks

The character of materials making up the spoil surfaces has an important effect on plant growth and ultimate soil development. These materials include the sands, silts, and clays, as well as sandstone, shales, and limestones. The variation in texture, acidity, and fertility of the spoil surface depends upon the amount of different kinds of rock overturned in the stripping operation. Textural classification of strip-mined lands, therefore, cannot be so simple, exacting, and detailed as for soils, which are usually derived from relatively uniform parent material. However, certain broad textural classes of spoils are recognized and grouped as follows:

- 1. <u>Sands</u>. Sandy spoils are composed principally of sand, sandstone, and sandy shales. Small scattered areas of other rocks may sometimes be found in sandy spoils. Sandy spoils are coarse-textured, drain rapidly, and have low water-retaining capacity. They are usually low in fertility and are generally suitable only for the growing of conifers and a few drought-resistant hardwoods.
- 2. Loams and Silty Shales. These are spoils composed mainly of loamy material and silty shales. More than 70 percent of the area of strip-mined lands in the region was found to be in this class (table 3). These banks usually contain enough silt and clay to provide good water-retaining capacity, thereby raising the general level of fertility. The high proportion of silty shale tends to provide good aeration and drainage.
- 3. <u>Clays</u>. Clay spoils are composed largely of clay, the remaining materials being limestones, clay shales, or silt derived from loessal deposits. The clay spoils usually have high fertility and waterretaining capacity. but because of the high proportion of silt and clay are poorly drained and aerated. The impervious character of such banks tends to make them water-logged when leveled.

The Ratio of "Soil" to Stone

The proportion of soil-sized particles (2 mm. or less in diameter) in the spoil material greatly influences the success of forest plantations. The ratio of soil to stone is important in considering the choice of species for planting, because of its effect on available soil moisture, aeration, and drainage. Water-holding capacity increases and internal drainage decreases as soil percentage increases through weathering. Initial survival and growth of plantations have been found to be directly related to this percentage of fine material in spoil surfaces. It may be the principal single criterion for determining the choice of dry-site or moistsite species.

Because of the absence of vegetation on newly formed banks, weathering proceeds mainly by two natural processes, physical disintegration and chemical decomposition. In spoil materials, physical disintegration is generally rapid during the first three to five years after stripping, and then proceeds at a very slow rate. Chemical decomposition is exceedingly slow, forming a relatively small proportion of soil each year. The determination of soil percentages made after the initial period of rapid disintegration will therefore provide a fairly reliable measurement of this site factor for a number of years.

Much more research is needed on rates of weathering in relation to the soil conditions that will ultimately prevail on a given site. Current and proposed investigations, if carried out for a number of years, aim to show soil percentage requirements for species suitable for planting on spoils as well as to ascertain proper "waiting periods" for planting on each site. Based on results obtained to date, only species adapted to dry sites will give good initial survival on banks with less than 50, 40, and 30 percent soil in the sandy, loamy, and clayey texture classes respectively.

Glacial, Loessal, Alluvial, and Other Deposits

The influence of deposits resulting from glaciers, wind, and water on the plantability of strip-mined lands is indirect, in that their effects relate chiefly to the percentage of soil, acidity, texture, and erodibility of bank surfaces. Thick mantles of glacial till, loess, and alluvium increase the proportion of soil, and thereby generally improve

Figure 10.--Soil percentage affects choice of species. Note difference in survival and height of jack pine planted on left bank with 60 percent soil and on right bank with 25 percent soil. Clay County, Indiana.

Figure 11.--Sliding action of stone and low percentage of soil make this a poor site for yellow poplar and black walnut. Saline County, Illinois. site conditions and accordingly affect the choice of species for planting. Valley stripping usually results in more soil in spoil surfaces than hillside stripping, because of the greater proportion of alluvium in the overburden. Because of the high silt content of loess, banks having a high proportion of this material are often subject to more gullying than others. The character of glacial till is variable, but where a high proportion of gravel and stone occurs spoil surfaces are usually coarse-textured and porous with good drainage.

TOPOGRAPHY

The general effects of topography on survival and development of plantations are well known, and are essentially the same for strip-mined lands as for other lands. The general configuration of undisturbed spoils is a succession of small ridges a short distance apart, single ridges with two large slopes, or a series of conical spoil piles. Recent studies have indicated that survival and growth for some species are much better on the relatively moist lower slopes than on the tops of ridges and upper slopes (fig. 12). Important species which are adapted to moist sites include white ash. yellow poplar, black walnut, catalpa, basswood, white oak, black locust, cottonwood, and sycamore. Oftentimes some of these species, including pines, grow equally well on both lower and upper slopes. This is due to excellent moisture conditions on bank tops, made possible by the right kinds of weathered materials. More studies are needed to show conclusively which species are best to plant on given kinds of site.

Comprehensive tests to determine the survival and growth rates of trees planted on leveled strip-mined land have already been established. Continuing observations and measurements will be needed before conclusive results can be obtained. The evidence to date on all of the sites studied, indicates no beneficial effects of leveling, and further

- 18 -

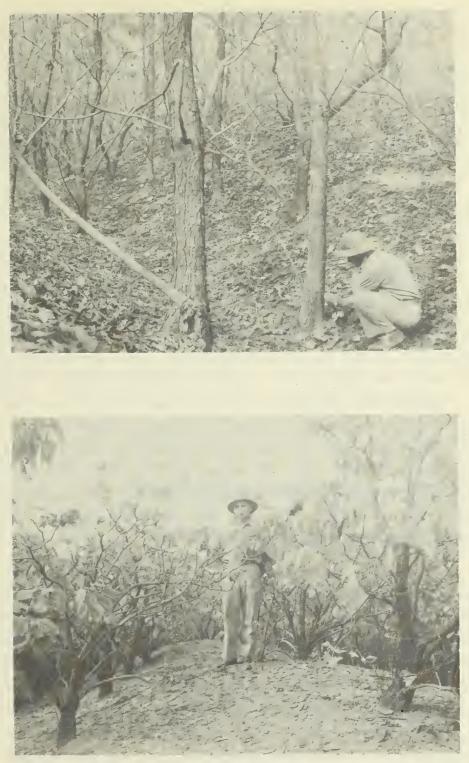


Figure 12.--Effect of topographic location on the growth of catalpa, Barton County, Missouri. A. Twelve-year old catalpa on bottom and lower slopes. B. Same plantation on ridge top. indicates detrimental effects on the growth of trees planted on leveled banks containing a high proportion of clay. For leveled sandy banks and for leveled loamy banks with a high proportion of stone, the choice of species may be similar to that for unleveled banks of these textures. On the contrary, leveled banks with high clay content should be planted with only those species capable of tolerating compact, water-logged, and impervious soils.

STABILITY

The degree to which spoils have settled or become stable must be considered in selecting tree species for planting. Also, the time required after stripping to attain stability sufficient for planting is important. The erodibility of strip-mined lands varies considerably with the textural makeup of surface materials. Spoils composed chiefly of sand or silty loess, for example, are much more subject to gullying than loamy spoils containing a large proportion of shale. Banks which are apt to be erosive should be stabilized by planting black locust, or, where soil conditions are appropriate, by seeding to such forage species as grass and sweet clover. If a timber stand is desired, other species can be planted after the banks have been stabilized.

In stripping operations the spoils created are sometimes placed on steep hillsides exceeding 60-percent grades, or placed in steep piles with slopes greater than 70 percent. If there is a distinct cleavage between these piles and the earth beneath--often detected by the seepage of water--the entire spoil mass may slip downward. Such slipping usually occurs within a few years after the stripping operation. Therefore areas of this kind--including the area below the stripping--should not be planted until at least five years after mining. Occasionally banks are composed almost entirely of loose flaky shale or large stones, and have little or no soil. These loose materials are continually sloughing or sliding downward. Because of the low soil percentage and the cutting action of sliding stone, such sites are poor planting chances. They should be left unplanted until the banks become reasonably stable.

GROUND COVER

The character and density of vegetation on strip-mined lands have considerable influence on the initial survival and growth of planted trees. The detrimental effects are due mainly to shading and excessive moisture loss. The relative importance of these effects varies according to local climate and kind of bank. On strip-mined areas west of the Mississippi River, where extreme drought in late summer is of common occurrence, soil moisture may be the limiting factor. On these areas the use of well-balanced planting stock is especially important. Banks supporting heavy sod or dense growth of legumes and weeds should, perhaps, be scalped at the time of planting, that is, all vegetation should be removed within a radius of approximately one foot from each planted tree. Well-balanced hardwood stock with 10- to 12-inch tops is recommended for such planting areas.

East of the Mississippi, rainfall is usually well distributed throughout the year. Consequently a dense growth of weeds and grasses develop on some banks. Small planting stock on these situations often sustain severe losses due to overtopping. For areas of this kind planting of large one-yearold hardwood stock will also give best results.

Some owners may wish to underplant strip-mined areas having brushy covers or having scattered trees of poor quality or undesirable species. Large stock of such species as yellow poplar, white ash, white oak, bur oak, hard maple, and basswood

Figure 13.--Where ground cover is dense, survival and development of pine plantations is usually poor. Jackson County, Illinois.

Figure 14.--Effect of spoil bank leveling on growth of silver maple. Area in foreground has been leveled, bank in background has been left undisturbed. Both areas planted at the same time. Fulton County, Illinois. should be used on these areas. Planting of pine in such areas will usually fail unless the overtopping vegetation is continually removed (Fig. 13).

BASIC SPOIL TYPE

The two site factors of greatest importance--acidity and texture--are combined to form the basic spoil types (table 3). More than 104 thousand acres, or 55 percent of the spoil area in the region, is made up of acid loams and silty shales (spoil type 3-B). Similarly, 26 thousand acres, or 14 percent is calcareous clay (spoil type 4-C). Recommendations for forest planting on spoil banks, given later in this paper, are based on the basic spoil types shown in table 3.

~
egio
Re
es R
tat
L Stat
ra
ent
Ŭ
the
ĺn
g
la
led
mir
i p-
9tr
of strip-m
30
Are
m
ble
Ta

by acidity and texture classes

	Acidity class	A. Sands	ds	B. Loams and silty shales	oams 1 hales	с. с	C. Clays	: Total	al
		Acres	Per- cent	VCLES	Per- cent	Acres	Per- cent	Acres	Fer- cent
Ч	Toxic. More than 75% of area with pH less than 4.0	1,067	0.6	2,156	1.1	1,128	0.6	4,351	2.3
2	Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+	1, 525	0.8	4,429	2.3	1,126	0.6	7,080	3.7
3	Acid. More than 50% with pH of 4.0-6.9	4,216	2.2	2.2 104,446	55.0	9,692	5.1	118,354	62.4
4	Calcareous. Mort than 50% with pH of 7.0 or higher	1,754	0.9	18,586	6.7	26,488	14.0	46,828	24.6
5	Mixed. Approximately the same proportion of toxic, acid and calcareous areas	2,154	1.1	8,355 4.4	4.4	2,750	1.4	13,259	7.0
	Total	10,716	5.7	5.7, 137,972 72.6 41,184	72.6	41,184	21.7	189,872	I00.0
7	<pre>1/ Includes Arkansas, Illinois,]</pre>	Indiana,	Iowa,	Iowa, Kansas,	Kentu	Kentucky, Missouri,	souri,	Ohio,	Oklahoma

FOREST PLANTING RECOMMENDATIONS

Before planting, the landowner should consider the species adaptable to the proposed planting area. He will also want to decide upon the main purpose of his planting. In establishing forest plantations on spoil banks, the owner must carefully consider the following factors: (1) choice of species; (2) season for planting; (3) spacing; (4) mixed planting; (5) care of stock and methods of planting; (6) care of plantations; (7) direct seeding; (8) exotic species.

CHOICE OF SPECIES

The species suitable for various kinds of planting sites are given in the tentative planting guide (pp. 35-39). The species recommended for an area are usually native to it, or are not too far removed from their natural range. A few species, particularly conifers, have been successfully planted far from their usual geographical ranges. Shortleaf pine plantations have been severely damaged by winterkilling when planted north of its natural range. In general, it is probably safer to plant northern pines farther south and eastern pines farther west of their natural range than it is to plant southern pines to the north of their native habitat. Some exotic species give promise for the production of certain small forest products -- Christmas trees, pulpwood, and posts --but data are insufficient for specific recommendations.

The recommendations in the planting guide are tentative, but should prove useful until further research determines the adaptability of species to the many conditions prevailing on strip-mined lands. They are, however, based on all studies and observations to the present time, and should help to reduce the number of plantation failures due to improper species selection for a given site. Conifers and hardwoods are listed separately in the planting guide, and the species in each group are given in the order of preference. In the choice of species, consideration should be given to the main purpose of the planting. Some of the objectives of forestation on strip-mined lands are:

- 1. <u>Soil improvement and erosion control.</u>--Because black locust has proved superior to other species for erosion control, no other species is listed for this purpose. It is, moreover, one of the best species for soil improvement, since bacteria associated with its roots add nitrogen to the soil. Because nitrogen is an element deficient in most spoils, and necessary for plant growth this factor is important. If tree planting is not desired on a given area, some grasses and legumes can often be seeded.
- 2. <u>Wildlife, recreational, and aesthetic planting.</u>--Although the planting guide was designed mainly for plantings to produce wood, the species recommended can be used in plantings for recreation, landscape beautification, and the creation of wildlife habitats. Many other species can provide food for game birds and mammals, but they have not been listed because they have not been planted widely enough to warrant specific recommendations.
- 3. <u>Wood production.</u>--The following species can be planted on strip-mined lands in the Central States for the production of wood products. The species are listed in order of preference for each use.
 - Mine props black locust, oak, ash, red elm, sycamore, other hardwoods, and pines. In the selection of black locust for wood production, great care should be taken to determine the possibility of trees reaching merchantable size before being damaged by the locust borer. The only known means by

which this can be determined is by examination of existing black locust stands on areas in the same locality having site conditions similar to the area to be planted. Very few plantations of this species in Indiana and Illinois have reached merchantable size without some damage by the borer. On the other hand, most plantations of black locust on strip-mined lands in Missouri, Kansas, and Oklahoma have escaped injury, and are yielding substantial quantities of fence posts in eight to ten years.

- Fence posts black locust, red cedar, Osage orange, catalpa, and pines.
- Christmas trees red, jack, white, Scotch, and Virginia pines; Norway spruce, and red cedar.
- Pulpwood cottonwood, soft maple, pines.
- Lumber, handle stock, etc. yellow poplar, black walnut, pine, white ash, green ash, red gum, oaks, sycamore, black cherry, Osage orange, red elm, cottonwood, maple, basswood, red cedar.

SEASON FOR PLANTING

Spring planting, preferably before new growth starts, is recommended. Fall plantings in this region, unless protected by tall grasses or weeds, are frequently subject to damage from winterkilling and frost-heaving. On spoils with considerable silt and clay, the losses from frost-heaving are often excessive. On sandy or loamy spoils, especially if well-balanced stock is used, fall planting may be successful. The use of tall, spindly, top-heavy coniferous stock, especially, should be avoided. From the standpoint of work-load distribution, some fall planting may be desirable.

Figure 15.--Red oak plantation, eight years old, on outer bank consisting mainly of glacial till and loess, neutral to slightly acid, 90 percent soil. Saline County, Illinois

The proper spacing for plantations is still a controversial issue on undisturbed land as well as on strip-mined land. There is probably no fixed spacing that is ideal for all species under all conditions and for all purposes. For planting on spoils where wood production is the main objective, a spacing of 7 by 7 feet appears to be about the most practicable. This spacing gives the horizontal distance between trees, not the slope distance, and results in about 890 trees per acre. Where the planting is made chiefly for aesthetic purposes or for growing Christmas trees, closer spacing of slow-growing species such as pine and red cedar may be advisable. The 6- by 6-foot and 5- by 5-foot spacings require 1,200 and 1,750 trees per acre, respectively. Close spacing may also be desired if erosion control is the chief purpose for the planting. An 8- by 8-foot spacing may suffice for those species that do not develop a branchy form at an early age when planted at wide spacings, especially where replanting of failed spots is planned. Wide spacings, such as 8 by 8 feet may also be satisfactory on exceptionally good sites, such as those banks containing a high proportion of soil to stone, and having a pH range between 6.0 and 8.0.

MIXED PLANTING

In general, mixed plantings of several species are more desirable than pure plantings of one species, because of the greater protection from insect and disease attacks, and the benefits of site improvement. Furthermore, if the season of planting is less favorable to one species than to another, mixed stands offer less likelihood of complete failure. In mixed stands containing black locust, the growth of the other hardwoods is greatly stimulated. This increased growth rate is so outstanding that mixed plantings including black locust are recommended. Species other than locust should be tolerant

- 29 -

to the locust shade. Mixing conifers with locust is not generally recommended unless mixed by groups. The diagram below suggests several arrangements for the mixed planting of black locust, with other hardwoods. Each "L" represents one planted black locust; each "O" represents one planted tree of other hardwoods.

		7.	5% B1	ack	Locu	ıst,	25	% Ot	her	Har	dwoo	ds		
			L L L L L	L 0 L 0 L		(] (] (L) L	L	CI	· · · · ·	L L L L			
		50	0% BI	lack	Locu	st,	50	% Ot	her	Har	dwoo	ds		
000000	L L L L	0 0 0 0	L L L L	0 0 0 0	L L L L	0 0 0 0	or	L 0 L 0 L	0 L 0 L 0	L 0 L 0 L	0 L 0 L 0	L 0 - L 0 L	0 L 0 L 0	L O L O L
		25	5% B]	ack	Locu	st,	75	% Ot	her	Har	dwoo	ds		
			0 0 0 0	L 0 L 0 L	0 0 0 0) 	0 0 0	I C I C I))	0 0 0 0			

Hardwood plantings should contain 50 to 75 percent black locust. The species can be planted alternately within each row or in alternate rows. In a 75-percent mixture, three rows of black locust can be alternated with a single row of the other hardwoods or can be mixed in the row. In mixed plantings the species can be changed with varying site conditions. For example, in a mixture of black locust with chestnut oak and yellow poplar, the latter species can be planted in the bottoms or on lower slopes and the oaks planted on the ridge tops and upper slopes.

In planting mixed conifers the species should ordinarily be grouped wherever growth rates and light tolerances of the mixed species are different. Not less than three rows of one species should be alternated with not less than three rows of another conifer. For Christmas tree planting, however, random mixtures are satisfactory and easier to handle in the planting operation. Random mixtures are also satisfactory where selective thinnings and other intermediate cuttings are planned. Alternate rows of conifers in mixed plantings are not generally considered good practice and should be avoided.

CARE OF STOCK AND METHODS OF PLANTING

- Rules to be followed in the care of stock are generally the same in planting strip-mined lands as for general reforestation practice. Because improper handling of stock has resulted in many plantation failures, the importance of proper care of trees before planting is emphasized. Roots of trees should be protected from drying, exposure to direct sunlight, or heating in tightly packed bales for long periods. Extreme care of planting stock is a "must" from the time the trees are lifted in the nursery until planted in the field.

Two generally used methods of planting are recommended for forestation of strip-mined lands, the bar-slit method, and the side-hole method, using grub hoes or mattocks.

More general use of the bar-slit method, where it is adaptable, will materially reduce planting costs. On favorable sites a trained crew will usually plant one-and-one-half to two times as many trees per day as by the mattock or hoe methods. The bar-slit method is applicable to those spoils where the bar can be thrust easily into the bank with little or no foot pressure, and where the resulting slit can be completely closed after planting by another thrust of the bar. The method is applicable to most of the sandy and loamy spoils containing a large proportion of shale. It is not applicable to heavy clay spoils nor to stony spoils.

Where the bar-slit method of planting is not practicable, the side-hole method using long-bladed grub hoes or mattocks should be used. Tests conducted on strip-mined areas have shown these two methods to have a survival and development rate equal to those of slower and more costly methods.

CARE OF PLANTATIONS

Most plantations need some care and protection during the period of their development. During the first two years after establishment some may need release from overtopping vegetation, and all should be examined periodically to determine the need for release and to note any damage from diseases or insects. Protection from fire and grazing by livestock is also necessary.

DIRECT SEEDING

Successful establishment of trees by direct seeding on stripped lands has been limited so far to heavy-seeded species such as black walnut and oaks. Current tests are showing that the direct seeding of light-seeded species results in considerable loss from erosion. The most promising species for direct seeding appear to be black walnut, and bur, red, and chestnut oaks.

EXOTIC SPECIES

Although not recommended for general use, some landowners may wish to use Scotch pine for Christmas trees. This species can, in general, be planted on those sites where jack pine is recommended. Ailanthus may occasionally be planted for pulpwood production. It spreads rapidly by natural regeneration and may be difficult to eradicate from areas it has invaded. Some natural stands of this species have been observed on strip-mined lands, and it has been found well suited to all nontoxic sites. Good growth can be expected if planted on the loamy or clayey spoils. The European and Japanese larches have made good growth on strip-mined lands in Pennsylvania and Indiana. Too little is known of the site requirements of these species to make definite recommendations, but both appear well adapted to sites having a pH between 5.0 and 7.5, even on poorly drained situations.

Figure 16.--Green ash plantation, nine years old, average height 15-20 feet. Seventy percent soil, 20 percent calcareous shale, 10 percent sandy shale. Knox County, Illinois.

THE TENTATIVE PLANTING GUIDE

The tentative planting guide that follows recommends tree species for planting on the principal spoil types. Part I recommends species for planting on sandy spoils in the various acidity classes. Parts II and III recommend species for the loamy and clayey spoils respectively. Part IV enumerates special conditions not occurring generally on strip-mined lands, but which need consideration where they do exist.

PART I--TENTATIVE PLANTING GUIDE

This part of the tentative planting guide suggests species for reforestation of strip-mined lands in the Central States that are predominantly sandy, with or without sandstone and sandy shales, and with lesser proportions of silty shales, limestone, silt, or clay.

Acidity class		nded for planting nin or near natural range)
	0-50% soil on spoil surface	51-100% soil on spoil surface
Acid More than 50% of area with pH of 4.0 - 6.9	Jack, red, shortleaf, Virginia pines Mixtures with black locust: chestnut oak, bur oak, cottonwood, green ash	Jack, red, white, shortleaf, Virginia, pitch pines Mixtures with black locust: bur oak, red oak, white and green ash, chestnut oak, cottonwood, sycamore, silver maple
Calcareous More than 50% of area with pH of 7.0 or higher	Red cedar, jack, red pines Mixtures with black locust: cottonwood, sycamore	Red cedar, jack, red, white, pitch pines Mixtures with black locust: bur oak, cottonwood, white and green ash, sycamore, red gum, red elm, silver maple, yellow poplar
Mixed Areas with patches of varying acidity see text, pg. 13	Group mixtures: red cedar, jack, red, short- leaf pines Mixtures with black locust: chestnut oak, bur oak, cottonwood, green ash, sycamore	Group mixtures: red cedar, red, jack, shortleaf, pitch pines Mixtures with black locust: chestnut oak, bur oak, cottonwood, sycamore, red gum, silver maple, yellow poplar

See Part IV for special conditions not applicable to all strip-mined lands, bu which affect planting recommendations where they occur.

PART II--TENTATIVE PLANTING GUIDE

This part of the tentative planting guide suggests species for reforestation of strip-mined lands in the Central States that are predominantly loamy with a greater proportion of silty shales, and with lesser proportions of sandstone, limestone and clay.

Acidity class	Species recommend (Restricted to areas withi	
	0-40% soil on spoil surface	41-100% soil on spoil surface
Acid	Jack, red, shortleaf, Virginia,pitch, ponderosa pines	Jack, white, shortleaf, Virginia, pitch, loblolly, red, ponderosa pines
More than 50% of area with pH of 4.0-6.9	Mixtures with black locust: chestnut oak, cottonwood, sycamore, bur oak, green ash	Mixtures with black locust: cottonwood, sycamore, yellow poplar, black walnut, red gum, red oak, white ash, green ash, silver maple, white oak, Osage orange, basswood (linden), hard (sugar) maple, black cherry
	Red cedar, red, Virginia, pitch pines	Red cedar, white, red, pitch, loblolly, ponderosa pines
Calcareous More than 50% of area with pH of 7.0 or higher	Mixtures with black locust: cottonwood, sycamore, red oak, bur oak, green ash	Mixtures with black locust: yellow poplar, black walnut, cottonwood, sycamore, red gum, red oak, white ash, green ash, silver maple, white oak, Osage orange, basswood (linden), hard (sugar) maple, black cherry, red elm, rock elm
Mixed	Group mixtures: Jack pine, red cedar, red, shortleaf, Virginia, pitch, ponderosa pines	Group mixtures: red cedar, white, red, shortleaf, pitch, loblolly, jack, ponderosa pines
Areas with patches of varying acid- itysee text, pg. 13	Mixtures with black locust: chestnut oak, cottonwood, sycamore, red oak, bur oak, green ash	Mixtures with black locust: yellow poplar, black walnut, cottonwood, sycamore, red gum, red oak, white ash, white oak, Osage orange, basswood (linden), hard (sugar) maple, black cherry, red elm, rock elm, green ash, silver maple

See Part IV for special conditions not applicable to all strip-mined lands, but which affect planting recommendations where they occur.

PART III--TENTATIVE PLANTING GUIDE

This part of the tentative planting guide suggests species for reforestation of strip-mined lands in the Central States that are composed predominantly of clay or silt, with or without limestone and clay shales, and with lesser amounts of sand, sandstone and silty shales.

Acidity class	(Restricted to areas wi	ended for planting thin or near natural range) 31-100% soil on spoil surface
<u>Acid</u> More than 50% of area with pH of 4.0-6.9	White, loblolly, pitch, ponderosa pines Mixtures with black locust: cottonwood, sycamore, red oak, red gum, chestnut oak, bur oak, green ash	Mixtures with black locust: cottonwood, sycamore, yellow poplar, black walnut, red gum, white ash, green ash, silver maple, hard (sugar) maple, basswood (linden), white oak, Osage orange, red elm, rock elm
Calcareous More than 50% of area with pH of 7.0 or higher	Red cedar, white pine Mixtures with black locust: cottonwood, sycamore, red oak, red gum, bur oak, green ash	Mixtures with black locust: cottonwood, sycamore, yellow poplar, black walnut, red gum, white ash, green ash, silver maple, hard (sugar) maple, basswood (linden), white oak, Osage orange, black cherry, red elm, rock elm
<u>Mixed</u>	Group mixtures: red cedar, white pine	Mixtures with black locust: cottonwood, sycamore, yellow poplar, black walnut, red
Areas with patches of varying acid- itysee text, pg. 13	Mixtures with black locust: cottonwood, sycamore, red oak, red gum, chestnut oak, bur oak, green ash	gum, white ash, green ash, silver maple, hard (sugar) maple, basswood (linden), white oak, Osage orange, black cherry, red elm, rock elm

See Part IV for special conditions not applicable to all strip-mined lands, but which affect planting recommendations where they occur.

PART IV -- TENTATIVE PLANTING GUIDE

This part of the tentative planting guide discusses special conditions not occurring generally on strip-mined lands, but which need consideration where they do exist.

- 1. <u>Toxic areas</u>. A few banks may have more than 75 percent of the surface area with a pH of 4.0 or less; this means that less than 25 percent of the area is not toxic, but these areas are usually so small and scattered that the entire bank should be considered nonplantable.
- 2. Marginal areas. These are banks where 50 75 percent of the surface area is toxic; the toxic areas are not plantable, but the remainder may be planted according to its classification as given in Parts I, II, and III. Such areas may not be suitable for timber production in their present condition, but planting for erosion control, soil improvement, wildlife, and aesthetic purposes is desirable.
- 3. Areas subject to severe gully erosion. For these areas planting of black locust, either pure or with small percentages of other hardwoods, is recommended. Where merchantable stands of black locust are not obtainable, underplanting with other hardwoods may be desirable, after spoil surfaces have been stabilized.
- 4. Leveled and partially leveled areas. For areas that have been leveled use the same species as recommended in Parts I, II, and III, where sites are in the sandy and loamy categories. If the area has a high proportion of clay, with little or no sandstone and shale, restrict species to white ash, green ash, black locust, sycamore, hard maple.
- 5. Areas subject to slipping and sliding. These are areas where spoils have been placed on original slopes with greater than 60 percent grades, or spoils which are piled in ridges having more than 70 percent grades. Slipping and sliding usually occur within a few years after stripping. Areas where this may occur should not be planted until five years after stripping.
- 6. Areas with dense ground cover. These are areas having a dense cover of legumes, grasses, and weeds. On these areas use the best grades of planting stock; for most species this means large, well-balanced seedlings or transplants. For areas of this kind west of the Mississippi River, it may be desirable to "scalp" spots two feet square before planting each tree. Large, well-balanced hardwoods are especially adapted to these sites.
- 7. <u>Cedar-apple rust</u>. Red cedar should not be planted within one mile of existing apple or pear orchards; these species are subject to a serious disease if growing in close proximity to red cedar. Some states have laws pertaining to the planting of red cedar and apple trees on contiguous areas, and these should be investigated before planting of red cedar is undertaken.

RESEARCH NEEDS

The recommendations contained in this publication should be regarded as general and tentative, since the completion of current and proposed investigations may reveal solutions to many problems relating to the reclamation of strip-mined lands. In addition to continuing studies in the adaptation of species to the varied site conditions, the following specific problems need further research:

- 1. Effects of leveling on growth and survival of forest plantations.
- 2. The effects of mixed plantings and the role of black locust as a nurse crop.
- 3. The range of acidity toxic to different tree species, the effects of acidity on the productivity of spoil materials, and methods of reducing the area of toxic spoils.
- 4. Rate of weathering for each of the many kinds of spoil materials occurring on strip-mined areas, and the age of spoils before planting should be undertaken.
- 5. Specifications of planting stock to meet the demands of each major spoil type.
- 6. Seeding studies to explore the possibilities of reducing reforestation costs by direct seeding.
- 7. Care of plantations, such as release cuttings, thinnings, pruning, and harvesting.

SUPPLEMENTARY PUBLICATIONS

In addition to this publication dealing with regional conditions and general classification of strip-mined lands, separate papers are being prepared showing in detail the character of strip-mined areas in each of the states in the

- 40 -

region. Maps showing the location of coal-bearing formations and strip-mined areas by spoil types are also being prepared for some of the states. (See sample in Appendix, pg. 44).

As solutions to the problems listed in "Research Needs" are found the information will be released as technical papers or through other publication media.

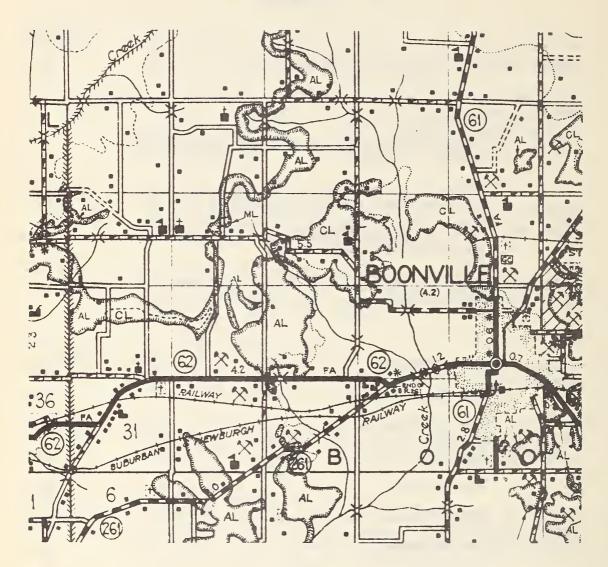
SUGGESTED READING

Chapman, A. G. 1935. The effects of black locust on associated species with special reference to forest trees. Ecol. Monog. 5: 37-60, illus., reprint.

1944. Forest planting on strip-mined coal lands with special reference to Ohio. Central States Forest Experiment Station Technical Paper No. 104, 25 pp. (Multilithed).

- 1947. Rehabilitation of areas stripped for coal. Central States Forest Experiment Station Technical Paper No. 108, 13 pp. (Multilithed).
- 1948. Survival and growth of various grades of shortleaf pine planting stock. Iowa State Journal of Science, 22: no. 4, 323-331.
- Griswald, N. B., and McKnight, J. S. 1947. Wood use by Alabama mines. Southern Forest Experiment Station Occasional Paper No. 109, 12 pp.. (Multilithed).
- Minckler, Leon S., and Chapman, Arthur G. 1948. Tree planting in the Central, Piedmont and Southern Appalachian regions. Farmers' Bulletin No. 1994, U. S. Dept. Agr.
- Moore, H. R., and Headington, R. C. 1940. Agriculture and land use as affected by stripmining of coal in eastern Ohio. Bulletin No. 135, Dept. of Rural Economics and Rural Sociology, Ohio Agr. Exp. Sta. (Mimeographed).
- Sand, Norbert H., Bryan, Milton M., et al. 1947. Managing the small forest. Farmers' Bulletin No. 1989. U. S. Dept. of Agr.

Tyner, Edward H., and Smith, Richard M. 1945. The reclamation of the strip-mined coal lands of West Virginia with forage species. Proc. Soil Science Society of America, 10: 429-436.


APPENDIX

			Pag	ze
Sample	str:	ip-Mine Reconnaissance Map	. 41	÷
		tatistics by states and counties, showing ing data:		
	1.	Area of strip-mined land by acidity and texture classes.		
	2.	Area of strip-mined land by county and soil texture and acidity class.		
	3.	Area of strip-mined land by county and character of vegetation.		
	4.	Area of strip-mined land by county and coal seam.		
		For Arkansas	. 45	5
		For Illinois	. 49	?
		For Indiana	. 53	3
		For Iowa	- 57	7
		For Kansas	. 60)
		For Kentucky	. 64	ŀ
		For Missouri	. 68	3
		For Ohio	. 72	2
		For Oklahoma	. 76	5

. .

SAMPLE

Part of a County Strip-mine Reconnaissance Map SCALE: | INCH = | MILE

<u>LEGEND</u>

Aciditu		Textural Class			
Acidity	SANDY	LOAMS & SILTY SHALES	CLAYS		
Class		Spoil Type Symbol			
TOXIC	TS	TL	тс		
MARGINAL	MS	ML	MC		
ACID	AS	AS AL AC			
CALCAREOUS	CS	CL	C C		
MIXED	MxS	MxL	MxC		

OUTCROP NO.5 COAL SEAM

AS STRIP-MINED AREA

ARKANSAS

Percent 16.5 0.0 78.9 4.6 0 100.0 Total 2,500 Acres 523 3,170 147 0 0 Percent 0.0 0.0 0 0 0 0 Clay ບ. Acres 0 0 0 0 0 0 .. Percent silty shales 100.0 78.9 4.6 16.5 0.0 • Loams and Acres 3,170 2,500 523 147 0 0 В. .. Percent 0.0 0 0 0.0 • ਼ Sands Acres A. 0 0 0 0 0 0 Mixed. Approximately the same proportion of toxic, acid and calcareous areas Toxic. More than 75% of Marginal. 50-75% toxic. Less than 51% with PH area with pH less than 4.0-6.9, and less than Calcareous. More than 50% with pH of 7.0 or Acid. More than 50% with pH of 4.0-6.9 Acidity class 51\$ with pH 7.0+ Total higher **0. †** ŝ N Ч ന 4

Table 4 .-- Area of strip-mined land by acidity and texture classes, 1947

- 45 -

								ALL S. SUSSACHING SPRING	t statuteler i sold versit a predirec with may a	and a second		and in statement of the description of				
County		Α.	Sands				Acidity of	B. Loams and silty shales Acidity class number	ty sha	Les		Ů.	. Clay	A.		Total
	-	2 :	3:	 †				·· ·	4	: 5	1	2.		4	5	
								Acres	Acres	Acres						ACTOR
Franklin	0	0	0	0	0	0	0	453	118	501	0	0	0	0	0	1,072
Johnson	0	0	0	0	0	0	0	643	29	0	0	0	0	0	0	672
Logan	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	22
Pope	0	0	0	0	0	0	0	92	0	0	0	0	0	0	0	92
Scoti	0	0	0	0	0	0	0	122	0	0	0	0	0	С	0	122
Sebastian	0	0	0	0	0	0	0	1,206	0	0	0	0	0	0	0	1,200
Total	0	0	0	0	0	0	0	2,500	147	523	0	0	0	0	0	3,247

ARKANSAS

Table 5.--Area of strip-mimed land by county and soil texture and acidity class, 1947

ARKANSAS

Table 6. -- Area of strip-mined land by county and

County	Barren	Weeds, grasses, shrubs and legumes	Fores		Total	Date of estimate
	Acres	Acres	Acres	Acres	Acres	
Franklin	233	489	346	4	1,072	9/47
Johnson	335	223 .	114	0	672	9/47
Logan	4	7	11	0	22	9/47
Pope	50	21	5	0	76	9/47
Scott	111	11	0	0	122	8/47
Sebastian	816	173	217	0	1,206	8/47
Total	1,549	924	693	4	3,170	

character of vegetation

ß
¢
S
N
4
М
щ
A.

Table 7 .-- Area of strip-mined land by county and coal seam

Total	Acres	1,072	672	22	76	122	1,206	3,170
No. 4, Paris : :	Acres	0	0	22	0	0	0	22
No. 3, Charleston :	Acres	974	0	0	0	0	14	988
No. 1, Lower Hartshorne	Acres	98	672	0	76	122	1,192	2,160
County		Franklin	Johnson	Logan	Pope	Scott	Sebastian	Total

Table 8 .-- Area of strip-mined land by acidity and texture classes, 1946

as 1 75% of s than % toxic. then s then		Sands Percent 0.0	B. Loams and Bilty shal Acres Per 253 0	and Bhales Percent 0.6	c. <u>Acres</u> 163	Clay Percent 0.4	Acrea 416	Total Total
51% with pH 7.0+ 3 Acid. More than 50% with pH of 4.0-6.9	0 0	0, 0,	362 2,717	0.9 6.8	173 1,323	0.4 3.3	535 4,040	0
4 Calcareous. More than 50% with pH of 7.0 or higher	878	5.2	21,754	54.7	8,662	21.8	31,294	_
5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas	1,984	5.0	178	4.0	1,373	3.4	3,535	
Total	2,862	7.2	25,264	63.4	11,694	29.4	39,820	

Table 9. -- Area of strip-mined land by county and soil texture and acidity class, 1946

	• •		A. Sa	Sanda		Ŀ	1	- 2	E			make when the strength of the second				
Country				CUNT	and the second	a.	LOAMB A	and silty		shales :		0	Clav			
An TIMAN	L	0	C				Acidity	class 1	number				0			I CT UL
	T 9	V .	2	+	5 .		·· 5	•• •	4 3			CJ	· · ·	1	1	
				Acres	Acres	Acres	ACTEB	Acres /	Acres	Acres	Acres	Arrea	0	Vorano	A Develo	
Bureau	C	0	<	(ACLEB	ACTER	
The second		5	С	0		0	0	0	573	C	C	C	0	<		
THRAF	0	0	0	0		0	C	C	2170				> <			
Fulton	0	0	0	C					50			0	0	0		
Grundy	0	0	C	785				> 0	0,26,0	0	0	173	0	3,7.0	122	
Henry	C			2			TCZ	0	2,024	0	0	0	300	9		
Hancock		> 0		C			0	0	2,198	144	С	C	C	0		
T	2	C	0	0			0	С	C	C						
JBCKBON	0	0	Ċ	C			1.0				0	Ο	500	0		
Knox	C	C	- C						0 7 7	0	0	0	230	[]]	E in	-02-1
Ingello			> <	2 0			0	0	- 25	0	0	0	C	759	('	
	2	2	0	C	0		0	0	C	C	163		0 0	10-		
rerry	0	0	0	0	0		C		and i				0	-5+	2	tice
Randolph	0	0	0	C) (006,4	>	0	0	0	1,50%	¢.	1.501
St. Clair	C	c	0		2.5			D	0	0	0	0	0	1,120		1. 1200
Saline	C	0 0	5 0		>		0	0	-,436	0	0	0	0	C	11	T A VE
- Counder	2 (3	C	0		0	.,926	0	C	C	0	0		C	-
TOTATOT	С	¢	0	0	0		C	C	¢						S	10517
Vermilion	0	0	0	C	C			2) - (>	0	0	2.2	0	17
TTTM	C	C	C	00	1001) ₁	* *	0564	34	0	0	143	641	140	10012
W111 famoon	c		> <	2	1, 704	0	tz).	0	,450	0	0	0	C	C	C	
TTPA CIVITIAN IN THINK IN AN	5	>	0	0	0	210	0	157	0	0	C		1111	, acc) C	~
Control D							-		A contract of the second					N N N	4.17	Lastr
TBLOT	0	0	0	878	1,984	253	362 2	2,717 21,	1.754	178	163	173 3	8 505 F	8 660 T	1	000 000
			The second s	and the second second second	and the second second				1.1		~~~		000		21217	39,020

Table 10. -- Area of strip-mined land by county and

char	acter	oſ	vege	tation

County	Barren	Weeds, grasses, shrubs and legumes	Fores	sted	Total	Date of estimate
	Acres	Acres	Acres	Acres	Acres	
Bureau	5	l	l	66	73	7/46
Edgar	0	230	16	0	246	8/46
Fulton	3,007	4,167	151	2,567	9,892	7/46
Grundy	1,378	1,764	73	164	3,379	9/46
Henry	370	1,103	196	673	2,342	7/46
Hancock	20	150	30	0	200	7/46
Jackson	470	385	56	624	1,535	5/46
Knox	1,339	291	28	706	2;364	7/46
La Salle	255	380	25	. 0	660	7/46
Perry	1,548	1,598	317	3,052	6,515	6/46
Randolph	270	253	89	508	1,120	5/46
St. Clair	280	768	101	287	1,436	6 /46
Saline	811	876	50	213	1,950	7/46
Schuyler	24	2	1	0	27	7/46
Vermilion	501	1,293	814	29	2,637	9/46
Will	676	2,049	249	627	3,6 01	7/46
Williamson	1,160	374	38	271	1,843	6/46
Total	12,114	15,684	2,235	9,787	39,820	

Table 11.--Area of strip-mined land by county and coal seam

: Total	Acres	73	246	9,892	3,379	2,342	200	1,535	2,364	660	6,515	1,120	1,436	1,950	27	2,637	3,601	1,843	39,820
Not determined	Acres	0	0	1,797	0	566	200	0	260	0	0	0	0	0	0	2,637	0	0	5,460
: No. 6, Herrin :	Acres	73	246	3,518	0	0	0	1,237	2,104	0	5,757	1,120	1,436	915	0	0	0	690	17,096
No. 5, Marrisburg (Springfield)	Acres	0	0	3,998	785	0	0	298	0,	0	758	0	0	1,035	27	0	0	1,153	8,054
: : No. 2, La Salle :	Acres	0	0	579	2,594	1,776	0	0	0	66 0	0	0	0	0	0	0	3,601	0	9,210
County		Bureau	Edgar	Fulton	Grundy	Henry	Hancock	Jackson	Knox	La Salle	Perry	Randolph	St. Clair	Saline	Schuyler	Vermilion	W111	Williamson	Total

1

Table 12. -- Area of strip-mined land by acidity and texture classes, 1947

Total	Percent	2.0	с. С	24.2	18.8	1.7	100.0
Tot	Acres	836	1,386	31,001	7,965	721	0.02 41,909
Clay	Percent	0.0	0.	0.	0.	0.02	0.02
C. C)	Acres	0	0	0	0	12	12
and hales	Percent	9.0	5	72.8	16.9	1.6	94.2
B. Loams and allty shales	Acres	241	746	30,425	7,191	682	39,486
Sands	Percent	1.4	1.1	1.4	1.9	0.06	5.8
A. Sa	Acres	595	439	576	42.2	27	2,411
: Acidity class	•	<pre>1 Toxic. More than 75% of area with pH less than 4.0</pre>	2 Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+	3 Acid. More than 50% with pH of 4.0-6.9	<pre>4 Calcareous. More than 50% with pH of 7.0 or higher</pre>	5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas	Total

Table 13. -- Area of strip-mined land by county and soil texture and acidity class, 1947

.

		L 0 + 0 T	TRIOT		Acrea		7,898	27	12	205	129	5,414	575	1,057	162	10,473	772	4,271	1,263	3,676	5,975		41,909
	••		2		Acres	(77	0	0	0	0	0	0	0	0	0	0	0	0	0	0		12
			4			¢	Э (0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	. Clay		с С			Ċ	-	э (0	0	0	0	0	0	0	0	0	0	0	0 (0		0
	0		0			C	ົ້	> 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	С		Э
••	••					C	> <	-	5 0	с (0 (0 0	0	0	0	0	0 (0 0	0 0	ქი	C	0	С
• =	shales	د	5	A second	ACTER	577		0 0) (> (с o	0 0	0	0 0	0	0 (0 0	C C	20	Οα	8	680	200
	silty s	number	4 :	- Caro V	AD TO L	1.257			b c	5 <		102.4		42 7 7	L T T	0 0		4 1 4		1,9/0	10/17	10 r - 1	+2+01
-	and	class	en ••	Acrea		5.952	10	<u>1</u> C	76		CHO CHO	שלאו		470 (T			2) 	150,0		a 888		-CC 7 301 02 270	(3+6)
	Loams	Ac1d1ty	€4	Acrea		0	С							> <	0 192			ç Ç	רקר) ł	oh7 3	
	. в.	A		Acrea		26	С	2	12	2 0	о с		> c		> c	00	n C	n c		၃၀	,	Lthe	1
			5	Acres		0	0	0	С									27	ī C	0		27	
	da		#	Acree		0	0	0	0	C	o c	o c) C) [10		o c	763	20	00		774	
	A. Sands		с •	Acres Acres Acres Acre		52	0	0	0	0		0	0	10	480		0	0	35	0		576	
	·		2	Acres		0	0	0	o	0	0	0	0	0	8	90	0	0	27	329		439	
				Acres		22	0	0	0	0	0	0	0	0	436	0	0	0	0	137		595	
		courtey				Clay	Daviebs	Dubois	Fountain	Gibson	Greene	Knox	Owen	Parke	Píke	Spencer	Sullivan	Vermillion	Vigo	Warrick		Total	

Table 14. ---Area of strip-mined land by county and character of vegetation

			ee Acres	98 : 101 27 : 0	•••••	•••	•• •		• ••		•••	••••	• ••		09 : 813		
		LetoT dîrte	Acres	: 7,898 : 27	•• ••		. 5, 4, 0	in i 	- С С	· 10.4		, tt , 2	ດັບ ຕິດ 	5,975	: 41,909		
		Planted & Wolunteer (Mixed)		0 0	0	0 0	53 53	107	62	138	0	120	0 0	23 c	556		8.
	Fair Stocking	Volun- teer	Acres	1,202 0	0	ΜC	1,077	28	377	115	0	347	146	62	3,917	8,488	and legumes
ted		Planted		362	0	00	518	108	00	1.298	2	692	67 802	136	·4,015	25,781	grasses ar
Forested		Mixed) Volunteer Blanted		317 0	0	о с	00	0	హ్హ గ్రా	 	0	565	20 a	10	1,373	25,	weeds, gr
	Good Stocking	teer Volun-	Acres	508 0	0	0 0	332	0 (0 6	518	0	175	0 4	40 473	2,075	17,293	Mixture of w
		pətasIq		1,644 3	0.0	170 170	1,838	56	117	4,360	294	1,416	152	3,305	13,845 8		3/ Mixt
		Естов & 4/ Ттеев		19 10	0	ос	25	0	00	 	: 69	18	- 75 - 75	91 :	420		
0	to Good cking	Mixed 3/	ωl	373 0	0	00	852	0	60	182	0	229	H %	716	2,518	62	
Herbs	Fair to Go Stocking	eemusel	Acres	144 0	0	0 0	146	0	ς Ω	00	0	. 363	934 16	90	1,386	4,879	
	Ĥ	weeda & grassea		64	0		37	0 \	л	34	0	181	10 4 a	100	555		mes.
	Poor tocking	edrbe & 2∕ Treea		1,642 0	0		143	0	100		0	0		<u>,</u> %	2,201		and legumes
	<u>م</u>	 Πerba		436 4	0	0 0	181	195	°	833	72	33	5 0 0	189	374 1,999		
Barren	Poor Stock-	Vol m-	Acres	73 0	12	0 0	0	0	54	55	0	0	0 10	148	374	11,249	8868, 6
	Poor	Planted		<i>с</i> со	0	0 0	00	81	00	583		9	0 00 -	0	893		ds, gra
		No cover		918 24	0	8 c	213	0	115	2,298	329		1 30	706	5,782		Includes weeds, grasses, shrubs
		country		Clay Daviess	Dubois	Fountain Gihaon	Greene	Knox	Owen Bowlro	Pike	Spencer	Sullivan	Vermillion	Warrick	Total	Group Totals	1/ Includ

 $\underline{2}/$ Includes poor stocking of planted and volunteer trees with poor stocking of weeds, grasses, and legumes.

 $\frac{1}{2}/$ Fair to good stocking of weeds, grasses and legumes; poor stocking of planted trees.

-

Table 15.--Area of strip-mined land by county and coal seam

County	Lower Minshall	Block	: No. 3	10. 4	: No. 5		: No. 7	Total
	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres
Clay	0	5,942	1,718	0	238	0	0	7,898
Daviess	0	0	0	27	0	0	0	27
Dubols	0	0	0	12	0	0	0	12
Fountain	205	0	0	0	0	0	0	205
Gibson	0	0	0	0	129	0	0	129
Greene	0	138	130	2,524	1,746	544	332	5,414
Knox	0	0	0	0	0	575	0	575
Owen	0	1,057	0	0	0	0	0	1,057
Parke	11	151	0	0	0	0	0	162
Pike	0	0	0	0	10,473	0	0	10,473
Spencer	0	0	0	0	772	0	0	772
Sullivan	0	0	0	0	668	2,553	819	4,271
Vermillion	.0	0	0	0	189	1,074	0	1,263
Vigo	0	0	328	848	2,313	187	0	3,676
Warrick	0	0	0	0	5,175	800	ò	5,975
Total	216	7,288	2,176	3,411	21,934	5,733	1,151	41,909

- 56 -

IOWA

Table 16.--Area of strip-mined land by acidity and texture classes, 1947

<pre>1 Toxic. More than 75% of area with pH less than 4.0 2 Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+ 3 Acid. More than 50% with pH of 4.0-6.9</pre>	Acres	Sanda Percent .0	. ailty Acres 470 251 828	eilty shales res Percent 470 18.8 251 10.0 828 33.2	Acres 0	Ercent 0.0	: Tc : Acres 470 251 828	Total <u>Percent</u> 18.8 10.0 33.2
<pre>4 Calcareous. More than 50% with pH of 7.0 or higher 5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas Total</pre>	0 0 0	0. 0. 0. 0	33 909 2,491	1.3 36.4	ο ω ο	.0 0.3 0.3	33 917 2,499	1.3 36.7 100.0

A
Μ
0
н

Table 17. -- Area of strip-mined land by county and soil texture and acidity class, 1947

· A. Sanda : B. Loams and sile . 1 : 2 : 3 4 : 5 : 1 : 2 : 3 . 1 : 2 : 3 4 : 5 : 1 : 2 : 3 : . 1 : 2 : 3 4 : 5 : 1 : 2 : 3 : . 0 0 0 0 113 37 0 0 0 0 0 0 113 37 0 0 0 0 0 0 113 37 0 0 0 0 0 0 113 37 0 0 0 0 0 0 212 33 177 0 0 0 0 0 222 0 0 0 0 0 0 0 0 26 101 435 0 0 0 0 0 0 0 0 0 0 0	: C. Clay :	5:1:2:3:4:5;		Acres Acres	0 0 0 0 0 0 150	570 0 0 0 0 0 992	339 8 0 0 0 0 981	0 0 0 22	0 0 0 0 0 0 0	0 0 0 0 0 136	909 8 0 0 0 0 2,499
. A. Sanda . . 1 2 3 4 5 1 . 1 2 3 4 5 1 . 0 0 0 0 11 1 1 0 0 0 0 0 0 11 1 0 0 0 0 0 0 11 1 0 0 0 0 0 0 11 1 </td <td>and silty class numb</td> <td>: 3 : 4</td> <td>r class numb</td> <td>Acres Acre</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>828 33</td>	and silty class numb	: 3 : 4	r class numb	Acres Acre				0			828 33
. A. Sanda . 1 2 3 4 : . 1 2 3 4 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-		Acres Acres							
	дв		de			0					
		2:3	1		0	0	0	0	0	0 0	0
			County		0	0	0	0	0	0	0

IOWA

Table 18. -- Area of strip-mined land by county and

County	Barren	Weeds, grasses, shrubs and legumes	Fore: Natural		Total	Date of estimate
	Acres	Acres	Acres	Acres	Acres	
Davis	112	36	2	0	150	8/47
Mahaska	615	321	42	14	992	8/47
Marion	544	370	65	2	981	8/47
Monroe	20	2	0	0	22	8/47
Wapello	147	18	3	0	168	8/47
Warren	65	87	34	0	186	8/47
Total	1,503	834	146	16	2,499	

character of vegetation

Table 19Area of strip-mined land by acidity and texture classes, 1940	B. Loams and Silty shales C. Clay Total	Acres Percent Acres Percent Acres Percent	171 0.7 0 0.0 243 1.0	97 0.3 0 .0 97 0.3	15,571 61.8 3,319 13.2 19,457 77.3	1,293 5.1 1,076 4.3 2,369 9.4	2,624 10.4 392 1.6 3,016 12.0	19,756 78.4 4,787 19.0 25,182 100.0
of strip-mi	A. Sands	Acres Percent	72 0.3	0.	567 2.3	0.	0.	639 2.6
Table 19 <u>Area</u> o	Acidity class	F	1 Toxic. More than 75% of area with pH less than 4.0	2 Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+	3 Acid. More than 50% with pH of 4.0-6.9	4 Calcareous. More than 50% with pH of 7.0 or higher	5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas	Total

- 60 -

Table 20. -- Area of strip-mined land by county and soil texture and acidity class, 1946

Acrea Acrea <t< th=""><th>a tanu</th><th></th><th>Α.</th><th>Sanda</th><th></th><th></th><th>: B. I</th><th>Loams and</th><th>and r l</th><th>silty shales</th><th>iles :</th><th></th><th></th><th>C. Clay</th><th>ay</th><th></th><th>То+о1</th></t<>	a tanu		Α.	San da			: B. I	Loams and	and r l	silty shales	iles :			C. Clay	ay		То+о1
Acrea Acrea <t< th=""><th>Formon</th><th>1</th><th></th><th>m</th><th>4</th><th></th><th>Ч</th><th>2</th><th>3</th><th>4</th><th>5</th><th></th><th></th><th>m</th><th>4</th><th></th><th></th></t<>	Formon	1		m	4		Ч	2	3	4	5			m	4		
on. 0 0 0 0 0 6 648 648 506 0 50 0 50 0 50 0 1 bkee 72 0 220 0 0 53 0 3,829 144 780 0 1,724 598 60 vy 0 0 347 0 0 1 47 10,631 357 921 0 128 598 508		Acres		Acres			Acres			Icres A	Cres			Acres	Acres	Acres	Acres
kee 72 0 220 0 55 0 3,829 144 780 0 1,724 598 60 ey 0 0 0 0 0 10 10 82 5 0 ford 0 0 0 0 11 47 10,631 377 921 0 789 385 196 1 ford 0 0 347 0 0 0 789 78 0 0 789 78 0 ford 0 347 0 11 47 10,631 377 921 0 78 78 196 1 kit 0 0 0 10 20 21 19 20 2	Bourbon.	0	0	0	0	Ь	0	0	688	648	506	0	0	20	0	4	1,876
vy 0 0 0 0 18 0 0 82 5 0 ford 0 347 0 0 11 47 10,631 377 921 0 789 385 196 13, thin 0 0 0 0 0 0 0 789 385 196 13, thin 0 0 0 0 0 0 0 10	Ch ero kee	72	0	220	0	0	55	0	3,829	144	780	0	0	1,724	598	60	7,482
ford 0 347 0 11 47 10,631 357 921 0 789 385 196 13, tlin 0	Coffey	0	0	0	0	0	0	0	18	0	0	0	0	82		0	105
x_{111} 0000000000000tte000000021802004000000000000001630200000 a 000000000000000 a 0000000163039700280141 a 0000000000000141 a 000000000000000 b 000000000000000000 b 0000000000000000000 b 00 <th< td=""><td>Crawford</td><td>0</td><td>0</td><td>347</td><td>0</td><td>0</td><td>III</td><td>L4</td><td>10,631</td><td>357</td><td>921</td><td>0</td><td>0</td><td>789</td><td>385</td><td>196</td><td>13,784</td></th<>	Crawford	0	0	347	0	0	III	L4	10,631	357	921	0	0	789	385	196	13,784
tte 0 0 0 0 5 0 218 0 20 0 4 0 0 0 0 0 0 0 0 0 0 0 6 44 0 0 6 4 0 0 4 0 0 0 \circ 0 0 0 0 0 0 0 642 88 91 \circ 0 0 0 0 0 0 0 24 41 0 41 41 \circ 0 0 0 0 0 30 30 0 28 0 41 \circ 0 0	ranklin	0	0	0	0	0	0	0	8	•	0	0	0	0	0	0	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Labette	0	0	0	0	0	ŝ	0	218	0	20	0	0	4	0	0	247
$\begin{array}{r[r r r r r r r r r r r r r r r r r r r$	tinn	0	0	0	0	0	0	0	9	144	0	0	0	642	88	91	971
0 1 7 1 2 2 5 7 1 2 2 6 0 0 3 3 1 0 6 3 3 3 1 0 5 5 7 1 2 3 3 1 0 1 3 1 3 3 3 1 0 5 3 3 3 3 1 0 1 3 3 3 3 3 2 2 2 3 3 3 3 3 3 2 3 3 3	Bage	0	0	0	0	0	0	50	163	0	397	0	0	28	0	L4	679
72 0 567 0 0 171 97 15,571 1,293 2,624 0 0 3,319 1,076 392	Vilson	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	30
	Total	72	0	567	0	0	171	97	15,571	1,293	2,624	0	0	3,319	1,076	392	25,182

Table 21, -- Area of strip-mined land by county and

Country	Demos	Weeds, grasses, shrubs and	: For	ested	: . Total	Date
County	: Barren :	legumes	Natural:	Planted	:	estimate
	Acres	Acres	Acres	Acres	Acres	
Bourbon	360	1,060	456	0	1,876	8/46
Che ro kee	3,096	2,338	579	1,469	7,482	7/46
Coffey	17	46	42	0	105	8/46
Crawford	5,968	5,011	1,949	856	13,784	7/46
Franklin	4	3	l	0	8	8/46
Labette	133	82	32	0	247	6/46
Linn	383	501	87	0	971	8/46
Osage	186	297	196	0	679	.8/46
Wilson	3	24	3	0	30	9/46
Total	10,150	9,362	3,345	2,325	25,182	

character of vegetation

Table 22. -- Area of strip-mined land by county and coal seam

County	1	No.3		No.6	No.9	No.11	N0.12	: No.14	: No.15	No.18	No.22	No.28	Total
	· UONJAATH :	SUDAMBU	Kowe	Melr	Mineral	COALVALE :	Croweburg	: Bevier	: Mulky	Mulberry :	Thayer :	Nodoway :	
	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres
Bourbon	0	0	0	0	55	0	ſ	882	896	04	0	0	1.876
Cherokee	9	81	167	2,368	3,589	0	0	1,271	0	0	0	0	7,482
Coffey	0	0	0	0	0	0	0	0	0	0	0	105	105
Crawford	0	0	42	3,151	5,705	13	0T4	3,985	478	0	0	0	13,784
Franklin	0	0	0	0	0	0	0	0	0	0	0	8	8
Labette	0	0	0	0	86	0	74	87	0	0	0	0	247
Linn	0	0	0	0	0	0		0	0	179	0	0	971
Оваде	0	0	0	0	0	0	0	0	0	0	0	679	679
Wilson	0	0	0	0	0	0	0	0	0	0	30	0	30
Total	9	81	209	5,519	9,435	13	487	.6,225	1,374	1,011	30	792	25,182

KENTUCKY

Table 23. -- Area of strip-mined land by acidity and texture classes, 1947

	Acidity class	A.	Sende	: B. Loan : silty	Loams and :	с. С	Clay :	Total	al
		Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
	Toxic. More than 75% of area with pH less than 4.0	0	0.0	0	0.0	0	0.0	<i>,</i> 0	0.0
CU I	Marginal. 50-75% toxic. Less than 51% with PH 4.0-6.9, and less than 51% with PH 7.0+	0	0.	1,154	15.9	0	•	1,154	15.9
~	3 Acid. More than 50% with pH of 4.0-6.9	22	0.3	6,052	83.3	23	0.3	6,097	83.9
<i>.</i>	Calcareous. More than 50% with pH of 7.0 or higher	0	0	16	0.2	0	O .	16	0.2
10	5 Mixed. Approximately the same proportion of toxic, acid and celcareous areas	0	0.	0	0,	0	0.	0	0.
	Total	33	0.3	7,222	4.66	53	0.3	7,267	100.0
F									

- 64 -

1122

KENTUCKY

Table 24. -- Area of strip-mined land by county and soil texture and acidity class, 1947

	•••		Α.	Sands			••	B. L(Loams a	and silty	y shale	les	••	0	c.	Clay			
								A	Acidity	r class	number	24							Total
country		CU 	•••	m	7	••	5	ы	2	З	4	<u>.</u>	r-1 	CJ 	••	 M	. +	5	
				Acrea					Acres	a Acres	Acres				Ac	Acres			Acres
			• 1																
Bowd	С	C	-	0	0		0	0	319	388	0	0	0	0			0	0	707
christian Christian		C		C	0		0	0	0	26	0	0	0	0		0	0	0	2
Tonnonk		, C		c	0		0	0	0	66	0	0	0	0		0	0	0	6
Hauroca Tanking		C		00	0		0	0	596	3,177	0	0	0	0		0	0	0	3,77
Tannal	00	0		0	0		0	0	0	213	0	0	0	0		0	0	0	21 2
Latchar		d		9	0		0	0	0		0	0	0	0		0	0	0	19
Wright				0	0		0	0	0		16	0	0	0		0	0	0	Ē.
Wihlenhero				16	0		0	0	149		0	0	0	0		0	0	0	74
Ohio		0		0	0		0	0	0		0	0	0	0		3	0	0	32
Darmy	0	0		0	0		0	0	0		0	0	0	0		0	0	0	21
Dire	C	a		0	0		0	0	0		0	0	0	0		0	0	0	17
Webster	0	0		0	0		0	0	90	295	0	0	0	0		0	0	0	38
Whitley	0	0	0	0	0		0	0	0		0	0	0	0		0	0	0	33
Total	0	0		22	0		0	0	1,154	6,052	16	0	0	0		23 .	0	0	7,267

KENTUCKY

Table 25. -- Area of strip-mined land by county and

County	: Bar	rren,	Weeds, gra shrubs a	Fore	sted	: . Total	Date
	:	:	legumes	 Natural	:Planted	• 0	estimate
	Acr	res	Acres	Acres	Acres	Acres	
Boyd	7	707	0	0	0	707	1/48
Christian		24	40	15	0	79	11/47
Hancock		94	<u>1</u>	l	0	99	1/48
Hopkins	2,7	795	687	270	21	3,773	9/47
Laurel	2	207	6	0	0	213	1/48
Letcher	1	197	2	0	0	199	11/47
McLean		11	5	0	0	16	11/47
Muhlenberg	e	501	64	80	0	745	11/47
Ohio	3	319	10	0	0	329	11/47
Perry	2	217	0	0	0	217	1/48
Pike	1	168	3	0	0	171	8/47
Webster	2	294	73	18	. 0	385	9/47
Whitley	2	290	դդ	0	0	334	8/47
Total.	5,9	924	938-	384	21	7,267	

character of vegetation

KENTUCKY

Table 26. --Area of strip-mined land by county and coal seam

.

	Total	Acres	70	13	66	17	171 334	14.1		al	es	85955 859 859 859 859 859 859 859 859 85	26
	To	Ac	7	CU	Ч	CU	Чm	1,841		Total	Acres	79 3,773 16 745 329 385	5,426
•	: Sewickly :	Acres	0	0	0	217	00	212		sport :	Acres	0 000000	66
	: Pittsburgh	Acres	319	0	0	0	00	319		: Lewisport	Acı		
q	Upper Freeport	Acres	388	0	0	0	00	388	ст T	Stray Seam	Acres	0 0 0 0 0 _N 0	23
Eastern Coal Field	#2 : Elkhorn #3 :	Acres	0	0	0	0	120 0	120	Western Coal Field	: +T# :	Acres	00000 80 80 80	875
Ea	Elkhorn #2	Acres	0	0	193	0	00	193	Me	#11 & 12	Acres	936 936 227 227 0 0 0 0 0	1,163
	Elkhorn #1 :	Acres	0	0 \	9	0	17 0	57		#11 ;	Acres	80700 50700 50700	403
	: Swamp Angel :	Acres	0	0	0	0	0 334	334		: 6# :	Acres	0 0 166 381 305 305	2,030
	Lily	Acres	0	213	0	0	00	213		; #6	Acres	79 647 00 107 00	833
	County		Boyd	Laurel	Letcher	Perry	Pike Whitley	Total		County		Christian Hancock Hopkins McLean Muhlenberg Ohio Webster	Total

н
æ
Þ
O,
Ø
0
M

Table 27 .-- Area of strip-mined land by acidity and texture classes, 1946

Acidity class	A. 9	Sands	B. Loar silty	Loams and silty shales	с.	Clay		Total
	Acres	Percent	Acres	Percent	Acres	Percent	Acres	Percent
1 Toxic. More than 77% of area with pH less than 4.0	168	2.0	304	1.2	476	1.8	948	3.7
2 Marginal. 50-75% toxic. Leas than 51% with pH	,		•					
4.0-6.9, and less then 51% with pH 7.0+	203	0.8	341	1.3	737	2.9	1,281	5.0
3 Acid. More than 50% with pH of 4.0-6.9	301	1,2	14,356	56.3	333	1.3	14,990	53.8
4 Calcareous. More than 50% with pH of 7.0 or	001		190 0	a		. a	24c 4	
	Not 1	*	10262	5.0	1, 400	0.1	4,340	T•)T
5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas	CH.	0.2	3,026	8.LL	863	3.4	3,931	15.4
Total	814	3.6	20,288	79.6	4,394	17.2	25,496	100.0

MISSOURI

Table 28. -- Area of strip-mined land by county and soil texture and acidity class, 1946

	A	A. Sanda	d.e	••	B.	Loams	and sil	silty sha	shales :		с.	Clay			
County					Ac	Acidity	class	number							Total
	Q 	с •	4	5	-	c,	m	. 4	5	-1	5	m	• tł	5	
Acrei	Acres Acres Acres Ac	Acres	Acres	Acres	Acres	Acres	ACTOR	Acres	Acres	Acres	Acres	Acres	Acres	Acres	Acres
14	0	25	0	42	0	135	8.408	0	410	5	0	0	0	0	
0	0	80 80	0	0	0	N	1,770	1,989	1,027	0	45	m	0	132	5,006
0	0	0	0	0	19	73	13	0	0		0	0	0	0	
Callaway 0	0	104	0	0	178	51	6	0	89		0	0	7	121	872
0	0	8	0	0	0	0	0	0	0		0	0	0	0	8
0	0	0	0	0	16	73	2,386	5 2	234	0	38	195	1,446	387	4,798
0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	02
14	0	4	0	0	0	0	1	0	0	0	0	0	0	0	112
0	0	0	0	0	-	5	29	141	Ч	0	0	0	16	150	273
0	0	0	o	0	0	0	0	180	368	0	0	0	252	0	800
Randolph 26	0	0	100	0	31	0	387	0	177	0	654	0	264	0	1,939
St. Clair 103	0	0	0	0	22	0	0	0	105	0	0	0	0	0	239
11	203	0	0	0	37	32	1,200	17	315	63	0	135	0	52	2,086
Total 168	203	301	100	142	304	341	14,356	2,261	3,026	476	737	333	1,985	863	25,496
		301	100	42	304			14,356	2,261	2,261	2,261 3,026	2,261 3,026 476	2,261 3,026 476 737	2,261 3,026 476 737 333 1,	2,261 3,026 476 737 333 1,985

MISSOURI

Table 29 .- - Area of strip-mined land by county and

County	Barren	Weeds, grasses, shrubs and legumes	Fores		Total	Date of estimate
	Acres	Acres	Acres	Acres	Acres	
Barton	2,874	5,334	798	33	9,039	9/46
Bates	2,543	1,537	925	l	5,006	10/46
Boone	157	10	3	0	170	10/46
Callaway	758	75	25	14	872	10/46
Dade	52	37	l	0	90	8/46
Henry	2,443	2,007	346	2	4,798	10/46
Howard	35	. 28	7	0	70	10/46
Jasper	42	65	5	0	112	8/46
Johnson	207	48	18	0	273	11/46
Macon	160	616	24	0	800	10/46
Randolph	1,374	408	27	130	1,939	10/46
St. Clair	104	77	57	1	239	10/46
Vernon	1,195	598	285	10	2,088	9/46
Total	11,944	10,840	2,521	191	25,496	na w

character of vegetation

•

MISSOURI

Table 30. -- Area of strip-mined land by county and coal seam

Total	Acres	9,039	5,006	170	872	6	4,798	70	112	273	800	1,939	239	2,088	25,496
No.18 Mulberry	Acres	0	4,353	0	0	0	0	0	0	0	0	0	0	0	4,353
No.15 Mulky	Acres	0	0	0	0	0	0	0	0	39	0	0	0	219	258
No.14 Bevier:	Acres	1	0	138	872	0	0	70	0	15	800	1,939	0	21	3,856
No.12 Tebo	Acres	141	0	32	0	0	1,372	0	0	69	0	0	114	769	2,497
No.11 Coalvale	Acres	0	0	0	0	0	0	0	0	0	0	0	0	54	24
No.10 Fleming	Acres	0	55	0	0	0	0	0	0	0	0	0	0	71	126
Rich Hill	Acres	223	596	0	0	0	2,720	0	0	150	0	0	0	777	4,466
No.6 Weir	Acres	8,480	0	0	0	0	0	0	0	0	0	0	125	185	8,790
Nos. 1-5 (Uncorrelated)	Acres	194	CJ	0	0	90	706	0	112	0	0	0	0	22	1,126
County :		Barton	Bates	Boone	Callaway	Dade	Henry	Howard	Jasper	Johnson	Macon	Randolph	St. Clair	Vernon	Total

Table 31. --Area of strip-mined land by acidity and texture classes, 1945-46

1

ł

Total	ee Percent	97 3.9	55 6.5	09 47.2	37 41 . 8	5 0.6	13 100.0
•• •• ••	t Acres	1,397	2,355	17,109	15,137	215	36,213
Clay	Percent	1.4	0.5	7.3	39.2	0.3	48.8
	Acrea	489	195	2,653	14,224	102	17,663
Loams and silty shales	Percent	2.0	3.6	33.9	2.5	0.1	41.9
B. Loams and	Acres	717	1,277	12,275	116	ম	15,192
A. Sands	Percent	0.5	2.4	6.0	0.1		9,3
A.	Acrea	191	883	2,181	0	TOT	3,358
Acidity class		<pre>1 Toxic. More than 75% of area with pH less than 4.0</pre>	2 Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+	3 Acid. More than 50% with pH of 4.0-6.9	4 Calcareous. More than 50% with pH of 7.0 or higher	5 Mixed. Approximately the same proportion of toxic, acid and calcareous areau	Total

O I H O

Table 32Area of etrip-mined land by county and soil terture and ecidity chasa. Jubi-blo County -Area of etrip-mined land by county and solly the last in the last intervent in the last intervent in the last intervent in the last intervent intervent in the last intervent interve				Total			ACTOR	585	1.805	126	3.509	198	28,	285	8,631	585	243	360	6,252	32	615	55	75	1.284	276	2.879	186	2.320	000	750	100	60	36,213
Table 32Area of etrip-mined land by county and soil texture and acidity class, with $\frac{1}{2}$.	+5-46	:	••	••	5		Acres	C	0	0	0	0	0	0	30	0	0	0	41	0	0	0	0	0	0	0	20		С) C) C	0	102
Table 32Area of etrip-mined land by county and soil texture and soid if y of a starts number. A. Sands : B. Loams and silty sinales : C. Clay and soil texture and soil transmer. Area for strep Area for starts number. and trans Acres								0	1.153	0	0	0	0	0	3,393	0	0	0	1,597	0	0	43	0	0	0	0	0	38	, C	C	C	0	lt,224
Table 32Area of atrip-mined land by county and soil texture and Area of atrip-mined land by county and soil texture and mty A. Sands : B. Loams and silty shales : i 1 2 3 4 5 1 . Acres Ac	ty cla		Clay		m			0	232	0	71	26	0	0	80	212	0	116	117	0	43	0	0	0	0	1,651	0	106	0	0	0	15	
Table 32Area of attrip-mined land by county and soil texture arbit 32Area of attrip-mined land by county and soil textures A. Sands : B. Loams and silty ehales : mty A. Sands : B. Loams and silty ehales : A. Sands : B. Loams and silty ehales : Arrest Acres Arrest Acres Acres <td></td> <td></td> <td>י ט</td> <td></td> <td>2</td> <td></td> <td></td> <td>0</td> <td>52</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>19</td> <td>37</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>47</td> <td>0</td> <td>17</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>			י ט		2			0	52	0	0	0	0	0	0	0	0	19	37	0	0	0	0	0	0	47	0	17	0	0	0	0	
Teble 32Area of strip-mined land by county and strip land strip and strip land strip and strip land strip and strip In an00 <td></td> <td></td> <td></td> <td></td> <td>ы</td> <td></td> <td>Acres</td> <td>0</td> <td>39</td> <td>0</td> <td>41</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>153</td> <td>0</td> <td>256</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>489</td>					ы		Acres	0	0	0	0	0	0	0	0	0	0	0	39	0	41	0	0	0	0	153	0	256	0	0	0	0	489
Table 32Area of atrip-mined land y county and silty mty : A. Sands : B. Loams and silty it j 4 mty : A. Sands : 4 Sands : B. Loams and silty mty : - Sands : 4 Sand : 4 Sands : 4 : : : : : : : : : : : : : : <td></td> <td></td> <td>ales</td> <td>h</td> <td></td> <td></td> <td>Acres</td> <td>0</td> <td>0</td> <td>ŝ</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td>			ales	h			Acres	0	0	ŝ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	12
Table 32Area of strip-mined land by county Activity class B. Loams and surd surd mty Activity class Activity class mty Acres Ac	1			numbe	: 4		ACTOB						23	0	62	0	0	0	600				0	0	28	0	0	0	0	13	0	45	116
Table 32Area of strip-mined land by commuty B. Loome mty A. Sands B. Loome $1 : 2 : 3 : 4 : 5 : 1 : 2$ A. Sands B. Loome Acres Acre			8	<u>1as</u>	m		Acres	296	196	807	1,727	290	5	285	0	102	243	104	77	32	0	ω	52	1,284	242	809	ω	1,305	3,749	623	ω	0	12,275
Table 32Area of strip-mined land mty A Sands B mty A Sands B Acres Acres Acres Acres Acres Acres Acres Acres Acres Acres Acres Acres acros 0 193 67 0 0 0 biana ut 185 1,201 0 0 0 biana ut 185 1,201 0 0 0 biana 0 197 0 0 0 0 0 biana 0 0 0 0 0 0 0 acton 0 0 0 0 0 0 0 biana ut 19 0 0 0 0 0 0 0 acton 0 0	by			cidity			Acres	0	149	0	233	133	0	0	0	0	0	0	91	0	0.	4	0	0	9	0	158	224	220	59	0	0	
Table 32Area of strip mty A. Sanda $1 : 2 : 3 : 4 :$ Acres Acres Acres Acres Acres I Acres Acres Acres Acres Acres I $1 : 2 : 3 : 4 :$ ant $0 : 193 : 67 : 0$ ant $0 : 193 : 67 : 0$ ant $0 : 193 : 67 : 0$ $0 : 199 : 0$ ant $0 : 0 : 0 : 0$ $0 : 0 : 0$ $0 : 0 : 0$ $0 : 0 : 0$ ant $0 : 0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ ant $0 : 0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ and $0 : 0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0$ $0 : 0 : 0$ ant $0 : 0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0$ $0 : 0 : 0 : 0$ ant $0 : 0 : 0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ $0 : 0 : 0 : 0$ ant $0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :$	1		B.	4			Acres	0	0	0	25	0	0	0	99	166	0	121	0	0	0	0	0	0	0	172	0	167	0	0	0	0	
Table 32Area of mty $:$ A. Sands $:$ 1 2 3 $:$ Acres Acres Acres Acres 4 . Sands mt 0 193 67 0 0 0 at 0 193 67 0	p-mine						ACTES	0	0	0	0	0	0	0	0	0	0	0	0	0	52	0	0	0	0	0	0	26	0	0	0	0	101
Table 32Area of mty A. Sande A. Sande Acres Acres Acres Acres Acres mt 0 193 67 mt 0 193 67 mt 0 193 67 mt 0 193 67 mt 0 0 109 biana 46 185 1,201 cton 0 0 0 0 ason 0 383 316 nce 0 383 316 nce 0 383 316 nce 0 0 0 ngum 0 383 316 nce 145 122 207 ngtum 0 0 0 0 ngum 0 0 0 0 ngeum 0 0 0 0 ngeum 0 0 0 0				-			ACTEB	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	CV
nty	Area of		Sanda		m	c	ACTOB	67	0	109	1,201	19	0	0	0	97	0	0	316	0	207	0	0	0	0	47	0	118	0	0	0	0	2,181
nty	32		Α.				ACTOB	193	0	0,	185	0	0	0	00	D	0	0	363	0	27 T	0	0	0	0	0	0	45	0	57	0	0	
County Athens Belmont Carroll Carroll Carroll Carroll Columbiana Coshocton Gallia Guernsey Harrison Hackson Jackson Volle Perry Portage Stark Vinton Washington Wayne Vinton	Table						ACTES	0	0	0 1	46	0	0	0	0	0	0	0	0 0		C+T	0	0	0	0	0	0	0	0	0	0	0	191
- 73 -				County				Athens	Belmont	Carroll	Columbiana	Coshocton	Gallia	Guernsey		HOCKING	ноттев	Jackson	Jefferson	Lawrence	Manoning	Meiga	Morgan	Muskingum	Noble	Perry	Portage	Stark	Tuscarawas	Vinton	Washington	Wayne	Total

OIHO

OHIO

Table 33 .- Area of strip-mined land by county and

County	: Barren	Weeds, grasses, shrubs and	Fore	ested	Total	Date
	0 0	legumes	Natural	Planted	• •	estimate
	Acres	Acres	Acres	Acres	Acres	
Athens Belmont Carroll Columbiana Coshocton Jallia Guernsey Harrison Hocking Holmes Jackson Jefferson Lawrence Mahoning Meigs Morgan Muskingum Noble Perry Portage Stark Tuscarawas Vinton Washington Wayne	477 1,164 726 2,437 493 16 167 3,233 477 194 303 3,314 32 519 51 74 726 251 2,014 174 1,710 3,377 660 8 57	$ \begin{array}{c} 64\\ 617\\ 180\\ 899\\ 5\\ 10\\ 95\\ 4,370\\ 83\\ 4\\ 15\\ 1,754\\ 0\\ 95\\ 4\\ 1\\ 157\\ 25\\ 494\\ 11\\ 548\\ 231\\ 79\\ 0\\ 3\end{array} $	44 17 4 93 0 2 5 225 0 42 842 0 131 0 241 18 6 13 0 0	0 7 11 80 0 18 803 0 45 0 342 0 342 0 342 0 0 342 0 0 270 0 130 0 130 0 44 4 355 0 0 0	585 1,805 921 3,509 498 285 8,631 585 243 360 6,252 32 615 55 75 1,284 2,879 186 2,320 3,969 752 8 60	10/46 8/47 9/46 1/47 9/46 1/47 12/46 12/46 9/46 11/45 9/46 9/46 12/46 12/46 12/46 12/46 12/46 12/46 12/46 8/46
Total	22,654	9,744	1,710	2,105	36,213	

character of vegetation

OIHO

Table 3^{4} .--Area of strip-mined land by county and coal seam

Total	Acres	585	1,805	921	3,509	498	28	285	8,631	585	243	360	6,252	32	615	-55	52	1,284	276	2,879	186		3,969		8	60	36,213
Sewickly Sewickly	Acres	0	1,020	0	0	0	0	0	348	0	0	0	223	0	0	0	33	0	269	0	0	0	0	0	8	0	1,901
No. 8a Redatone	Acres /	0	0	0	0	0	0	0	0	0	0	0	0	32	0	1 2	0	0	0	0	0	0	0	0	0	0	44
No. 8 Pittaburg	Acres /	94	785	0	0	0	23	45	8,283	0	0	0	6,029	0	0	⁴ 3	42	11	2	0	0	0	0	0	0	0	15,316
Harlem	Acres	0	0	ŝ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
жит по лям	Acres	0	0	261	532	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	793
Uo. 7 No. 7 No. 7	Acres /	10†	0	86	2,855	0	ŝ	240	0	29	0	121	0	0	198	0	0	117	0	137	0	59	09	207	0	0	4,515
Lower Freeport	Acres	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
No. 6a Upper Kittanning	Acres	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	45
Kittänning Middle No. 6	Acres	104	0	123	0	498	0	0	0	390	91	0	0	0	264	0	0	1,156	0	2,099	0	568	225	156	0	0	5,674
No. 5a Straabourg	Acres	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30
No. 5 Lower Kittanning,	Acres	0	0	416	116	0	0	0	0	0	152	127	0	0	153	0	0	0	0	643	0	1,136	3,076	0	0	15	5,834
0 & 7 .goW benidmoO) (µaiqqiri2,	Acres	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	521	594	0	0	0	1,115
No, 4a Clarion	Acres	0	0	0	0	0	0	0	0	166	0	50	0	0	0	0	0	0	0	0	0	0	0	367	0	0	583
08en	Acres	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ω	0	0	8
No. 4 Brookville No. 4	Acres	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28	Ч	14	0	45	88
No. 3a Upper Mercer	Acres	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8
No. 2 Quakertown	Acres	0	0	0	0	0	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36
No. J Sharon No. J	Acres	0	0	0	0	0	0	0	0	0	0	26	0	0	0	0	0	0	0	0	186	0	0	0	0	0	212
County		Athens	Belmont	Carroll	Columbiana	Coshocton	Gallia	Guernsey	Harrison	Hocking	Holmes	Jackson	Jefferson	Lawrence	Mahoning	Meigs	Morgan	Muskingum	Noble	Perry	Portage	Stark	Tuscarawas	Vinton	Washington	Wayne	Total

J

i

OKLAHOMA

Table 35 .-- Area of strip-mined land by acidity and texture classes, 1946

Total	Percent	0.5	0.3	83 .2	2.11	, 4.8	100.0
 EI	Acres	Γţ	21	6, 924	929	LO4	8,316
Clay	Percent	0*0	0.3	24.5	6.5	0. ?	31.3
ව	Acres	0	21	2,041	541	0	2,603
Loams and Lty shales	Percent	0.0	0.	51.9	7.4	4.8	. 4.19
b. Loams and silty shales	Acrea	0	0	4,314	388	101	5,103
Sands	Percent	0.5	0.	6.8	0.	0.	7.3
A. S.	Acres	14	C	569	0	0	610
Acidity class		<pre>1 Toxic. More than 75% of area with pH less than 4.0</pre>	2 Marginal. 50-75% toxic. Less than 51% with pH 4.0-6.9, and less than 51% with pH 7.0+	3 Acid. More than 50% with pH of 4.0-6.9	4 Calcareous. More than 50% with pH of 7.0 or higher	5 Mixed. Approximately the same proportion of toxic, acid and calcareous areas	Total

OKLAHOMA

Table 36 .-- Area of strip-mined land by county and soil texture and acidity class, 1947

••		Α.	Sanda			•••	B. Lo	Loams s	and sil	silty shales			с С	. Clay	ay		••	
County :							Acidity	5 I	class number	umber								Total
	••	2	e Series	4		••	••	ŝ	•• ന	* †	5		CU ••	с •	: 4	 L		
	Acres		Acres						Acres 1	Acres	Acres		ACTOR	Acres	Acres Acres Acres	m		Acres
Atoka	0	0	0	0	0	0	0	0	0	0	0	0	0	81		0	0	81
Coal	0	0	0	0	0		0	0	0	0	0	0	0	265		0	0	265
Craig	τ 1	0	0	0	0	~	0	0	67	911	7	0	21	137		0	0	389
Haskell	0	0	.0	0	0	0	0	0	1420	0	0	0	0	504		0	0	924
Latimer	0	0	0	0	0	0	0	0	14	0	0	0	0		0	0	0	14
Маутев	0	0	0	0	0	~	0	0	64	0	0	0	0	J	0	0	0	94
Muskogee	0	0	0	0	0	~	0	0	0	0	0	0	0	474		0	0	744
Okmulgee	0	0.	0	0	Ö	~	0	0	0	0	0	0	0	149		0	0	149
Pittsburg	0	0	0	0	0	~	0	0	132	0	0	0	0	28		0	0	160
Rogers	0	0	269	0	0	0	0	0	971	59	0	0	0	295		0	0	1,894
Tulsa	0	0	0	0	0	~	0	0	164	213	0	0	0		0 541		0	1,251
Vaganer	0	o	0	0	0	0	0	0	2,119	0	394	0	0	108		0	0	2,621
Total.	T4	Ø	569	0	0		0	0	4,314	388	104	0	21	2,041	1 541	0		8,316

OKLAHOMA

Table 37 .-- Area of strip-mined land by county and

character of vegetation

County	Barren	Weeds, grasses, shrubs and	Fore	sted	Total	Date of
		legumes	Natural	:Planted	10041	estimate
	Acres	Acres	Acres	Acres	Acres	
Atoka	28	50	3	0	81	5/46
Coal	121	133	11	0	265	5/46
Craig	183	184	22	0	389	5/46
Haskell	252	524	106	42	924	5/46
Latimer	2	8	4	0	14	5/46
Mayes	54	11	4	25	94	4/46
Muskogee	285	176	13	0	474	5/46
Okmulgee	62	74	13	0	149	5/46
Pittsburg	72	56	32	0	160	5/46
Rogers	1,284	507	98	5	1,894	4/46
Tulsa	513	466	174	98	·1,251	4/46
Wagoner -	1,926	570	83	42	2,621	4/46
Total	4,782	• 2,759	563	212	8,316	

No.2 Upper	No.3 McAleater	No.6 Secor	No.9 Henreyetta	No.l0 Fleming	No.12 Broken Arrow	No.l4 Bevier	No.15 Ft. Scott	No.19 Dawson	Total	
Acres	Acres	Acrea	Acres	Acres	Acres	Acres	Acres	Acres	Acres	
				¢	c	c	C	0	81	
81	0	0	0	0	-) C	0	265	
0	265	0	0.	5 ₁	5 4) -	235	0	389	
C	0	0	74	74	<u> </u>	4 0)) c		924	
	924	0	0	0	0	0	. .		14	
	, 14	0	0	0	0 -	0 0	-		16	
	C	0	0	0	5	0	-		474	
,	307	167	0	0	0	c	5 (
> <			140	0	0	0	0	0		
0		a	i i	c	0	0	0	o,	TOO T	
0	L32		-		000	0	0	605	1,894	
Ч	0	66	2	> <	100	c	0	957	1,251	
C	0	0	0	5	1 1 2 0) (C	2,621	
) C	c	C	129	0	2,492	D	>	>		
>	>	, ,								
		- L (260	7h	4.114	Ч	235	1,562	8,316	
82	1,042	+62	D/C	-						

ОКГАНОМА

.

0

Table 38.--Area of strip-mined land by county and coal seam

TERRITORY SERVED BY THE CENTRAL STATES FOREST EXPERIMENT STATION FOREST SERVICE

U. S. DEPARTMENT OF AGRICULTURE

